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Abstract— Machine learning methods, such as deep learning,
show promising results in the medical domain. However, the
lack of interpretability of these algorithms may hinder their
applicability to medical decision support systems. This paper
studies an interpretable deep learning technique, called SincNet.
SincNet is a convolutional neural network that efficiently learns
customized band-pass filters through trainable sinc-functions.
In this study, we use SincNet to analyze the neural activity of
individuals with Autism Spectrum Disorder (ASD), who experi-
ence characteristic differences in neural oscillatory activity. In
particular, we propose a novel SincNet-based neural network
for detecting emotions in ASD patients using EEG signals. The
learned filters can be easily inspected to detect which part of
the EEG spectrum is used for predicting emotions. We found
that our system automatically learns the high-α (9-13 Hz) and
β (13-30 Hz) band suppression often present in individuals with
ASD. This result is consistent with recent neuroscience studies
on emotion recognition, which found an association between
these band suppressions and the behavioral deficits observed
in individuals with ASD. The improved interpretability of
SincNet is achieved without sacrificing performance in emotion
recognition.

I. INTRODUCTION

The recent development of artificial intelligence fosters
unprecedented innovation in the healthcare domain. The
availability of big data repositories, the development of
robust learning algorithms, and the availability of appropriate
computational resources are making technologies such as
deep learning, applicable and challenging the state-of-the-art
systems. Deep learning (DL) has indeed been used in many
medical applications [1], including disease diagnosis [2], and
personalized medicine [3], just to name a few. In such critical
cases, the lack of interpretability of this technology limits its
widespread end-user adoption and may even lead to adverse
consequences [4].
Current deep neural networks map low-level data into higher-
level concepts using a pipeline of non-linear transformations
[5]. Therefore, the final prediction is normally not explained
by the network, and end-users ( i.e. healthcare professionals
) do not know if the outcome is based on solid evidence or
due to some statistical biases [6]. Moreover, the inspection
of the intermediate representations learned by the network
rarely helps to explain the neural predictions. Improving the
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interpretability of the current technology is an essential con-
dition for overcoming understandable skepticism, reluctance,
and hesitations of the medical personnel.
Interpretable deep learning has been the object of increasing
research efforts over the last years [7]. Historically, there
was a trade-off between performance and interpretability.
Simple models like linear regression are transparent but not
competitive in terms of performance with deeper models
such as fully-connected, convolutional, and recurrent neural
networks. A possible solution may be post-hoc interpretabil-
ity [7], in which, a complex neural model is built and
analyzed afterward . The interpretability can also be achieved
with surrogate models (e.g., locally interpretable model ex-
planations - LIME [8]) and with gradient-based methods like
in the saliency maps [9]. In contrast, the alternative is to train
machine learning models that are interpretable by design.
Along this line, a novel model called SincNet has been
proposed [10]. SincNet is a convolutional neural network that
learns a custom filter-bank using sinc-based convolutional
kernels. Following the network training, the filters can be
inspected in the frequency domain to identify which parts
of the spectrum are used by the neural network to perform
a prediction. The filter inspection is straightforward and
often insightful, as emerged in some recent studies [11]–[13].
The interpretability insights are directly mapping the neural
network parameters to the input signal. SincNet has been
originally proposed for processing audio sequences [10], but
it has been recently used for EEG-based brain signals as
well. In particular, SincNet has been successfully adopted for
EEG-based motor-imagery tasks [12], [13]. The full potential
of this model in high-level processing of input stimuli (e.g.
visual or audio), however, is yet to be explored.
In this paper, we propose SincNet for studying the brain
activity of patients with Autism Spectrum Disorder (ASD).
In particular, we analyze EEG signals of ASD and non-ASD
individuals while performing a Facial Emotion Recognition
(FER) task. The EEG recordings feed a deep learning model
based on SincNet, which tries to guess patients’ emotions
from their brain waves. From the study of filters learned by
SincNet, we found an interesting consistency with the Power-
Spectral-Density analysis of previous EEG studies on ASD.
The improved interpretability is achieved without sacrificing
the performance of the machine learning models. The pro-
posed system provides a contribution to the interpretability-
by-design alternative by applying deep learning techniques
to the medical domain.
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Fig. 1: The proposed architecture for EEG-based Face Emotion Recognition. The neural pipeline is composed of a SincConv layer, three
standard conv-pool blocks (Conv1, Conv2, and Conv3), and a fully-connected network (DNN1) connected to a softmax classifier.

II. FACIAL EMOTION RECOGNITION WITH SINCNET

The Facial Emotion Recognition (FER) task measures the
ability to identify basic emotions in facial expressions. It is
particular important to asses this ability in individuals with
Autism Spectrum Disorder (ASD) because they frequently
demonstrate impairments in the ability to accurately cate-
gorize and label the emotional facial expressions of others.
In this section, we first describe the FER task. Then, we
describe the proposed architecture for EEG-based emotion
recognition in ASD and typically developing (TD) individu-
als.

A. FER Task Description

Eighty-eight 14-to-17-year old adolescent participants (48
without ASD, while 40 with ASD) completed a FER task.
The FER task, called Diagnostic Analysis of Nonverbal
Behavior (DANVA-2) [14], consists of presenting 48 pho-
tographs in random order. Each photograph represents one
of following emotions: happy, sad, angry, and fear. The
picture was first shown to the users for 2 second and, within
this interval, their EEG signal was recorded. Subsequently,
each photograph was shown again (for up 4 seconds) to give
the participant enough time to select the emotion they have
seen in the picture using a button box. The EEG activity of
each participant was fed into the proposed machine learning
system, which is designed to predict the actual emotion from
the given brain recordings. The full pipeline for EEG-based
emotion recognition is shown in Figure 1.

B. EEG pre-processing

The EEG signals were captured with a 32-channel Ac-
tiCHAMP device from Brain Products and digitized with
a sampling rate of 500 Hz (16-bit resolution). The data
were recorded continuously using the BrainVision Recorder
software and processed using the BrainVision Analyzer 2.0
for offline data reduction. We converted all the input channels
averaging them into a single sequence or a grand-average
Event- Related Potential (ERP) representation for each par-
ticipant and for each emotion. This helps reducing noise
and statistical variability of EEG trials [15]. We employed

a standard EEG pre-processing pipeline based on band-
pass filtering, amplitude normalization, and Zero Component
Analysis (ZCA) whitening [16]. We also apply the ADJUST
algorithm [17] and the PREP pipeline [18] to clean the EEG
signal before feeding the neural network.

C. Intepretable SincNet

The resulting grand-average ERP representation feeds the
proposed SincNet-based system. SincNet is a convolutional
neural network whose first layer, called SincConv, is de-
signed to learn tunable Finite Impulse Response (FIR) filters.
In standard CNNs, all the elements (taps) of each filter are
learned from the data. In SincConv, instead, we parametrize
the kernels in order to implement rectangular bandpass
filters, whose cut-off frequencies are the only two parameters
learned from data. This can be achieved with the following
parametrization:

y[n] = x[n] ∗ g[n, f1, f2], (1)

where x[n] is the input EEG signal and y[n] is the output
of the SinConv layer. The convolution is performed with the
kernel g, which is defined in this way:

g[n, f1, f2] = 2f2sinc(2πf2n)− 2f1sinc(2πf1n), (2)

where the frequencies f1 and f2 are the learned parameters.
This technique not only saves a lot of parameters but
naturally leads to a more interpretable model. Moreover,
the filters depend on human-readable parameters with a
clear physical meaning. At the end of the training, the
filters are inspected to identify which parts of the spectrum
are covered by filters. This helps users better understand
what the network has learned [11], [13]. In addition to
the SincConv layer, the proposed architecture employs three
2-D convolutional blocks based on standard convolution,
batch normalization, pooling, ReLU activations, and dropout.
Finally, we plug a fully connected layer followed by a
softmax classifier.

III. EXPERIMENTAL SETUP

In this section, we describe our SincNet-based emotion
recognition architecture and its training procedure.
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Fig. 2: Power Spectral Density (PSD) learned by SincNet filters
on TD and ASD individuals. Significant differences are observed
in high-α (9-13 Hz) and β (13-30 Hz) bands.

A. Architecture details

The adopted SincConv layer employed 100 filters with
a kernel size of 250 points (which represent the impulse
response of the filter). As in the original paper, [10], a
Hamming window was used to mitigate ripples in the filters.
The 2-D convolutional blocks were based on 32, 64, and 128
channels with kernel sizes of (100 x 10), (20 x 5), (5 x 2),
respectively. Max-pooling used kernel sizes of (10 x 5), (5
x 2), (2 x 2). Batch normalization was added between the
convolution and the ReLU activations. Next, we employed
a single fully connected layer composed of 1024 ReLU
neurons. Dropout was used in both convolutional and fully
connected layers with a rate of 0.5. The final prediction over
the four emotions was performed with a softmax classifier.

B. Network Training

We trained and evaluated the SincNet-based pipeline using
a Leave-One-Trial-Out (LOTO) approach [16]. Thus, for
each participant we used 47 out of the 48 trials for training,
leaving a different test trial out every time. Therefore, we
completed a total of 48 training/validation experiments. This
modality was needed due to the lack of in-domain data for
this specific task. The neural network was initialized with
the standard Glorot’s initialization scheme [19]. We used
categorical cross-entropy as a loss function. The gradient
was computed with the backpropagation algorithm, while
parameters are updated using the Adam optimizer [20]. We
used a learning rate of 0.001 with a weight-decay penalty
of 1e − 05. We trained the neural network for 400 epochs
with a batch size of 30. For more information on the neural
architecture and training modality, please refer to the open-
source code repository of this project1.

IV. RESULTS

In the following section, we report the experimental evi-
dence that emerged from the FER task using SincNet.

1https://github.com/meiyor/SincNet-for-Autism-EEG-based-Emotion-
Recognition
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Fig. 3: Accuracy comparison between FER (humans), CNN, and
SincNet. Human accuracy is significantly lower than the one of
deep learning systems.
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Fig. 4: Confusion Matrix for the SincNet pipeline on ASD.

A. Filter Analysis

After training, we inspected the filters learned by SincNet
for ASD and non-ASD (TD) participants. To analyze which
EEG frequency bands were used for the emotion prediction,
we performed a Fourier Transform of the learned filters. We
then averaged their frequency responses and computed the
cumulative Power Spectral Density (PSD) reported in Fig. 2.
We observed significant differences in the filters learned from
ASD and non-ASD participants. In particular, an attenuation
in the high-α (9-13 Hz) and β (13-30 Hz) emerged in the
cumulative PSD spectrum of ASD participants. We observed
significant differences between non-ASD and ASD groups
on high-α (9-13 Hz) F (1, 87) = 3.331, p = 0.000267
and β (13-30 Hz) F (1, 87) = 2.05, p = 0.00102 bands
after Bonferroni-Holm correction. Our findings are consistent
with previous studies on ASD, indicating that high-α and β
attenuations are related to FER deficits on individuals with
ASD [21], [22]. Although this frequency-band attenuation
has been observed in some EEG studies including individuals
with ASD, the causes of this are not fully understood in the
scientific community. Some authors hypothesized that this
is associated with multiple behavioral deficits of individuals
with ASD [23], [24]. However, it is worth notice that SincNet
learns that these bands are not useful to predict emotions
in individuals with ASD. Notably, these predictions were
learned automatically from raw EEG data only, without
providing any additional information to the network.
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B. Performance Analysis

Figure 3 compares the accuracy achieved by humans in
FER with the one reached by the deep learning systems
based on CNNs and SincNet. As for the human performance
or FER, we found a small difference between ASD and non-
ASD accuracies (79% vs 81%, respectively), thus, showing
some consistent deficits in individuals with ASD performing
FER tasks [23], [24]. Interestingly, deep learning systems
outperformed the FER human accuracy. This suggests that
there were some cases where a participant wrongly labeled
the photograph, but the SincNet-based system was able to
detect the correct emotion from participants’ EEG brain
activity. This difference is more evident in ASD participants,
where the SincNet improvement is greater (79% vs 92%)
than FER. The SincNet confusion matrix for the ASD group
is shown in Figure 4. The proposed SincNet pipeline turned
out to slightly outperforming a CNN-based system (90%
vs 85% for the non-ASD group and 92% vs 91% for
the ASD group). The CNN architecture was obtained by
replacing the SincConv layer with a standard convolution.
This improvement is consistent with what was observed for
audio [10] and motor-based EEG signal in previous studies
[13]. In sum, our results confirm that SincNet improves the
interpretability of the model without sacrificing performance.

V. CONCLUSIONS

This paper has proposed the application of an interpretable
deep-learning architecture, SincNet, in a medical domain.
We applied this model to study EEG activity patterns of
ASDs and non-ASDs in a FER task. Our results indicate that
SincNet transparently learns the high-α and β suppressions
observed in ASD individuals when perceiving and recogniz-
ing emotional faces. SincNet improves the interpretability
of the neural model without affecting its performance, thus
offering a convenient way to avoid the performance versus
interpretability dilemma.
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