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Abstract— Physiological processes such as cardiac pulsations
and respiration can induce signal modulations in functional
magnetic resonance imaging (fMRI) time series, and confound
inferences made about neural processing from analyses
of the blood oxygenation level-dependent (BOLD) signals.
Retrospective image space correction of physiological noise
(RETROICOR) is a widely used approach to reduce
physiological signals in data. Independent component analysis
(ICA) is a valuable blind source separation method for
analyzing brain networks, referred to as intrinsic connectivity
networks (ICNs). Previously, we showed that temporal
properties of the ICA-derived networks such as spectral
power and functional network connectivity could be impacted
by RETROICOR corrections. The goal of this study is to
investigate the effect of retrospective correction of physiological
artifacts on the ICA dimensionality (model order) and
intensities of ICN spatial maps. To this aim, brain BOLD
fMRI, heartbeat, and respiration were measured in 22 healthy
subjects during resting state. ICA dimensionality was estimated
using minimum description length (MDL) based on i.i.d. data
samples and smoothness FWHM kernel, and entropy-rate based
order selection by finite memory length model (ER-FM) and
autoregressive model (ER-AR). Differences in spatial maps
between the raw and denoised data were compared using the
paired t-test and false discovery rate (FDR) thresholding was
used to correct for multiple comparisons. Results showed that
ICA dimensionality was greater in the raw data compared
to the denoised data. Significant differences were found in
the intensities of spatial maps for three ICNs: basal ganglia,
precuneus, and frontal network. These preliminary results
indicate that the retrospective physiological noise correction can
induce change in the resting state spatial map intensity related
to the within-network connectivity. More research is needed to
understand this effect.

I. INTRODUCTION

One of the challenges in inferring meaningful information
related to neuronal activity from the blood oxygen level-
dependent functional magnetic resonance imaging (BOLD
fMRI) has been the presence of physiological signals in
fMRI [1]. These signals originate predominantly from the
cardiorespiratory system and they are capable of modifying
BOLD signals by, e.g., inducing changes in the magnetic
field (B0) due to respiration induced chest movement, or
the pulsatility of cerebrospinal fluid during each heartbeat
[2]. One of the methods that has been proposed to
reduce the effect of physiological signals in fMRI data is
retrospective correction in imaging space (RETROICOR;
[1]). RETROICOR uses a low-order Fourier transform, and
includes measures of cardiorespiratory phases in a regression
model which is applied to each voxel’s data separately [1].
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Blind source separation techniques such as independent
component analysis (ICA) can recover a set of signals from
their linear mixtures, and has been shown to be capable
of separating out different sources of signals including
physiological noise in fMRI data. ICA can decompose fMRI
data into a set of maximally independent maps in the spatial
or temporal domain [3]. Spatial ICA methods can decompose
fMRI data into functional brain networks, which are often
referred to as intrinsic connectivity networks (ICNs). These
networks show consistent, though not identical, spatial
patterns in the absence or presence of task. Understanding the
variability of these networks in clinical settings has become
increasingly important especially in biomarker studies.

Previously, we showed that RETROICOR corrections
induce changes in the ICN temporal properties, namely
power spectra and functional network connectivity [4]. In
this study we aim to examine the effect of physiological
denoising on ICA dimensionality (model order), i.e.,
estimation of the number of informative components in
the data, and spatial map intensities related to the degree
of connectivity and coactivation within a network. We
use the minimum description length (MDL), and entropy-
rate (ER) order selection algorithms to estimate the
number of independent source components. Following the
statistical framework proposed in [3], we will perform ICA
decomposition at relatively high model order of 75 and
measure the reliability of decomposition by ICASSO [5].
Finally, we evaluate resultant ICN spatial map intensities to
identify the effects of RETROICOR corrections throughout
cortical and subcortical networks.

II. MATERIALS AND METHODS
A. Data Acquisition

Resting state fMRI data was collected from 22 healthy
volunteers (12 females; mean age: 37.73 ± 11.32 years).
All subjects provided written, IRB-approved consent and
were compensated. During the scan, they were asked to
stay still and relax with their eyes closed but avoid falling
into sleep. Scans were acquired on a 3.0 T GE scanner
using EFGRE3D pulse sequence with 2.0-s repeat time,
30-ms echo time, 22-cm field of view, 64 × 64 acquisition
matrix, 76o flip angle, 4-mm slice thickness, 1-mm gap,
31 slices, and ascending acquisition. 360 volumes were
acquired per scan. Subjects’ heart beats were recorded
using a pulse-oximeter and respiration was measured with
a plethysmograph. General exclusion criteria included a
history of head injury, neurological disorders, or MRI
incompatibility such as having mental implants or pregnancy.
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B. Data Preprocessing

Upon completion of scans, two copies of the dataset
were created. One copy underwent RETROICOR correction
[1] (denoised), while the other did not (raw). All images
were preprocessed using Statistical Parametric Mapping
version 12b (SPM12b, Wellcome Department of Cognitive
Neurology). Preprocessing of resting state functional images
involved motion correction using rigid body transformation,
slice time correction, spatial normalization to MNI space,
spatial smoothing with a Gaussian kernel of FWHM of 8
mm and intensity normalization [3].

C. Model Order Estimation

We used different methods for estimating the number of
independent source components:

1) The MDL criterion is based on model selection
formulation by Wax and Kailath. This algorithm
implements information theoretic criterion and down-
samples the data to obtain independent and identically
distributed (i.i.d.) samples [6].

2) The MDL criterion based on full width at half
maximum (FWHM). This method skips i.i.d sampling
of the datasets [6]. 5 mm smoothness FWHM kernel
was used.

3) Entropy-rate based order selection by finite memory
length model (ER-FM). This algorithm estimates the
ICA model order for dependent samples by considering
all the samples to estimate the likelihood. The
likelihood estimators assume the signal to have finite
memory length [7].

4) Entropy-rate based order selection by autoregressive
model (ER-AR). Similar to ER-FM, this algorithm also
estimates the order for dependent samples from all
the samples to estimate the likelihood. However, the
likelihood estimators assume that the signals can be
modeled by an autoregressive mode [7].

D. Group independent components analysis

Group ICA was performed using the Group ICA of
fMRI Toolbox (GIFTv3.0c; University of New Mexico,
USA). Following the statistical framework proposed in [3],
we chose relatively high model order ICA (number of
components = 75) as such high model order can yield
more refined components. In the first step, subject-specific
data reduction principal component analysis (PCA) was
performed, which resulted in retaining 100 PCs with a
standard economy-size decomposition. In the second step,
group data reduction resulted in retaining 75 PCs using
the expectation-maximization algorithm. The Infomax ICA
algorithm was repeated 20 times in ICASSO to estimate
the reliability of the decomposition [5]. The quality of
component clusters was quantified using the Iq index. Iq
is a number between 0 to 1 and reflects the difference
between intra-cluster and extra-cluster similarity [3], [5]. In
the third and final step, subject-specific spatial maps and their
corresponding time courses were estimated using the GICA3
back-reconstruction method in GIFT software.

We identified a subset of components considered to be
ICNs using the procedures described in our earlier works [4],
[8]–[10]. Briefly, components with Iq < 0.8 was eliminated.
Artifactual components were also discarded upon visual
inspection based on their motion-related spatial maps, peak
activation in the ventricles, or domination of their time
courses by high frequency power [3]. To facilitate evaluation,
multiple spatial regression analysis were also performed on
the components with publicly available network templates
[3]. For the set of selected ICNs, component spatial maps
were thresholded to focus the analysis on the voxels that were
most representative of each network. To define significant
brain regions associated with each ICN, back-reconstructed
spatial maps was normalized into z scores, and the averaged
maps of z scores were entered into second-level random
effects analysis in SPM12. The significance threshold was set
at family-wise error (FEW)-corrected threshold of p < 0.05
for multiple comparisons of voxel-wise whole-brain analysis.
The highest t-value and the locus of the peak activation (x,
y, z) in MNI coordinates were saved. Differences in spatial
maps between the raw and denoised data were compared
using the paired t-test with the mancovan toolbox in GIFT
package. False discovery rate (FDR) thresholding was used
to correct for multiple comparisons at p < 0.05.

III. RESULTS

Results of model order estimation are summarized in Table
1. All 22 subjects were used for ICA model order estimation
and separately for each condition. Mean, median, max and
standard deviation are reported.

From 75-IC decomposition, thirty-six components were
identified as ICNs (Fig. 1). They are grouped by their
anatomical and functional properties into the precuneus
(PN), visual (VN), sensorimotor (SMN), auditory (AUD),
default-mode (DMN), language (LN), cognitive/attention
(CAN), sub-cortical (SCN), and cerebellar (CBN) networks.
The resultant ICNs are very similar to those found in
previous studies with high model order ICA [3]. The quality
index (Iq) associated with each ICN, number of voxels at
FWE-corrected p-value; maximum t-statistic (tmax); peak
coordinate (in mm) of tmax in MNI space are displayed in
Table 2. Paired t-test results for raw – denoissed datasets are
shown at uncorrected p< 0.05 (Fig. 2A), and FDR-corrected
p < 0.05 (Fig. 2B). The ICNs that survived FDR-correction
are displayed separately in Fig. 2C.
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Fig. 1. Spatial maps of 36 ICNs shown in neurological convention (right is right), FEW-corrected p < 0.05.

IV. CONCLUSION

Considering the growing interest in ICA network analysis,
the goal of this study was to determine if physiological
noise correction impacts ICA model order and spatial map

intensities. Results revealed that ICA dimensionality was
lower for data with RETROICOR correction. In addition,
significant changes were observed in spatial maps with
RETROICOR correction. Decrease in spatial map intensities
was particularly pronounced (FDR-corrected p < 0.05) in
basal ganglia (IC 31), precuneus (IC 12), and frontal
networks (IC 62) (Fig. 2B). ICN spatial map intensities
can be considered a measure of within-network connectivity
strength. Denoising reduced the cohesiveness and intra-
network connectivity in the above-mentioned networks.
We also observed coordinates of peak voxel shifted from
putamen to caudate nucleus in the basal ganglia network,
and from superior occipital gyrus to cuneus in precuneus
network with RETROICOR (Table 2). On the basis of these
preliminary results, removal of such physiological signals
from BOLD data must be carefully evaluated as these signals
might not be noise per se, but a theoretically meaningful
component of the signal to investigate brain function [11].
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