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Abstract— EEG-EMG based hybrid Brain Computer In-
terface (hBCI) utilizes the brain-muscle physiological system
to interpret and identify motor behaviors, and transmit
human intelligence to automated machines in AI applications
such as neurorehabilitations and brain-like intelligence. The
study introduces a hBCI method for motor behaviors, where
multiple time series of the brain neuromuscular network are
introduced to indicate brain-muscle causal interactions, and
features are extracted based on Relative Causal Strengths
(RCSs) derived by Noise-assisted Multivariate Empirical
Mode Decomposition (NA-MEMD) based Causal Decompo-
sition. The complex process in brain neuromuscular interac-
tions is specifically investigated towards a monitoring task of
upper limb movement, whose 63-channel EEGs and 2-channel
EMGs are composed of data inputs. The energy and frequency
factors counted from RCSs were extracted as Core Features
(CFs). Results showed accuracies of 91.4% and 81.4% with
CFs for identifying cascaded (No Movement and Movement
Execution) and 3-class (No Movement, Right Movement, and
Left Movement) using Naive Bayes classifier, respectively.
Moreover, those reached 100% and 94.3% when employing
CFs combined with eigenvalues processed by Common Spatial
Pattern (CSP). This initial work implies a novel causality
inference based hBCI solution for the detection of human
upper limb movement.

I. Introduction

The brain-muscle physiological network focused on the
function and regulation of a complex process between
brain and neuromuscular systems, and served for hybrid
Brain Computer Interface (hBCI) by disclosing brain-
behavior architecture and operational principles of the
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network, similarly as previous techniques in brain net-
work (e.g., Functional Connectivity, Causal Modeling,
and Multivariate Modeling) have been discussed [1] [2].

Causality analysis is a commonly used tool for effec-
tive connectivity that infers the cause-effect relation-
ship across distributed brain responses [3]. The most
prevalent theory currently was Granger causality, which
relied on time dependency of time series, and requested
a priori of the temporal separability between cause
and effect [4]. However, such separability would not
critically be handled in complex systems such as physio-
logical processes, and may fail to identify the causality.
Thus Yang et.al. proposed Ensemble Empirical Mode
Decomposition (EEMD) based Causal Decomposition,
and introduced fundamentals of cause-effect is phase-
dependent, rather than time-dependent [5].

Following this work, Zhang et.al further extended
causal decomposition to brain physiological network
in bivariate and multiscale time series, called Noise-
assisted Multivariate Empirical Mode Decomposition
(NA-MEMD) based Causal Decomposition. This method
defined Intrinsic Causal Components (ICCs) sets from
the naturally decomposed Intrinsic Mode Functions
(IMFs). In ICCs sets, the primary ICCs are then de-
termined, and then the causal inference is identified by
Relative Causal Strengths (RCSs) in the procedure of
causal decomposition [6], [7].

Many studies also have addressed machine learning for
identifications of upper limb movements. Schwarz et.al
utilized EEG time series in motor execution (reaching
and grasping actions of human upper limbs), obtaining
the accuracy of 74.2% for cascaded and 65.9% for
multi-class recognitions [8]. Cho et.al investigated hand
motions with 20-channel EEGs by extracting Common
Spatial Pattern (CSP) as Core Features (CFs), and
reached 56.83% using the regularized Linear Discrimi-
nant Analysis (LDA) classifier [9]. Ofner et.al used low-
frequency time-domain EEG signals (< 3 Hz) to extract
Discriminative Spatial Pattern (DSP) as features and
classify them by LDA, reaching the accuracy of 87% for
cascade task and 55% for 5-class [10]. There were also
studies mentioned about the detection of upper limb
movement by using motor imaginary EEG and EMG
data [11].

This study proposed a detection method for up-
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per limb movement using NA-MEMD based Causal
Decomposition combined with CSP. 63-channel EEG
and 2-channel EMG time series data were acquired
from the subject experiment. NA-MEMD based Causal
Decomposition was also used for the determination of
EEG channel selection. RCSs and CSP derivatives were
introduced to form the input feature for two or multi-
class classifications (Figure 1).

Fig. 1. The overall procedure of a detection method of NA-MEMD
based Causal Decomposition combined with CSP for upper limb
movements.

II. Experiments
The experimental procedures involving human sub-

jects described in this paper were approved by the
ethics committee of University of Electronic Science and
Technology of China (UESTC). One right-handed and
untrained healthy female subject aged 24 participated in
the experiment. The experiment was set in a darkened
environment, during which 2-channel EMG data from
biceps brachii of left and right upper limbs and 63-
channel EEG were collected by the ANT Neuro eegoT M

Mylab device. Especially, a bipolar electrode configura-
tion and a differential amplify measurement was used for
EMG measures. Two 5 × 3.5 cm rectangular electrode
pieces were pasted closely on center of the biceps brachii.
The experiment session included three-second resting
followed by 30 repetitions of limb extension and flexion
while holding with 2.5 kg dumbbell. More related details
can refer to preliminarily studies [6].

III. Methods
A. Preprocessing

The raw EEG and EMG data first were processed to
eliminate power-line interference. The average reference
method was applied in EEG time series data.Then, the
bandpass Butterworth filters of 1-160 Hz and 20-350 Hz
were used to EEG and EMG time series, respectively
[6]. The one-second data (2000 data points) collected
at the onset of upper limb movement was targeted as
the trial data. Totally 30 trials for right arm extension
and 28 trials for left were collected. The onset time of

the limb movement was trial-by-trial calibrated by the
threshold θ of the corresponding EMG time series. θ
was defined as, θ = µ + kσ , where k was set to 10, and
µ and σ were the mean and standard deviation of the
corresponding EMG time series [12]. In addition, 60 trials
in the rest period were also segmented as the same data
length with 58 EEG-EMG paired trials. Any trials with
EEG artefacts, including Electrooculogram (EOG), and
slight head or body movements, were manually viewed
and rejected from the study use. It was concluded that
a total of 118 samples were included in the study.

B. Channel Selection
The details of the theoretical work of NA-MEMD

based Causal Decomposition can be followed by [6].
In this study, 63-channel EEG and 2-channel EMG
time series were together processed by NA-MEMD,
and generated a set of IMFs. According to earlier
findings in neuroscience, neuromuscular activities in the
limb movement were confirmed to be driven by brain
cortex, especially by primary motor cortex (M1) [1].
Therefore, the 63-channel EEGs of the whole brain
perhaps contained redundant information, which may
degrade the identification performance. In this study,
NA-MEMD based Causal Decomposition was first ap-
plied to channel selection, which was specified by (i)
computing Relative Causal Strengths (RCSs) between
63-channel EEG and 2-channel EMG via NA-MEMD
based Causal Decomposition for the trials in the rest
period; (ii) obtaining RCSs between EEGs and one EMG
(either left or right) from the biceps with movement; (iii)
the significant test was applied between (i) and (ii) to
find independent EEG channels that primarily caused
limb behaviors. One-way analysis of variance (ANOVA)
was then used to test the significant difference in the
condition of whether movements occurred. The channels
with significant differences (p < 0.05) were regarded as
causality correlation in terms of EEG-EMG channels.

C. Feature Extraction
In order to obtain CFs in representation of EEG-EMG

causal interactions in terms of upper limb movement,
the time window was first applied to time series trials.
Based on preliminary studies [6], the time window was set
to 100 data points with no overlapping. The quantified
effects of causality were measured by (1) the quantities
of RCSs with respect to time, namely Energy factor
(E); (2) the quantities of the number of the directed
causal relationship, namely Frequency factor (N). E and
N were applied as CFs for recognizing the two or multi-
classifications of upper limb movement. In addition, CSP
was also retained as the input CFs referring to its
acceptable outcome reported from previous studies [13].

D. Model Training and Evaluation
Four classifiers were compared for classification perfor-

mance, Naive Bayes (NB), Random Forest (RF), Support
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Vector Machine (SVM) and K-nearest Neighbor (KNN).
The batch-size and the number decimal places in NB
classifier were set to 120 and 3, respectively. The number
of trees, execution slots, iterations and seeds were set to
100, 1, 100 and 1 in RF, respectively. c (loss function)
and γ (kernel function) in SVM were set to 1 and 0.001,
respectively. The parameter k in KNN was set to 3. Two
classification tasks were taken in the study, (i) Cascaded
(movement execution (58 samples) v.s. no movement (60
samples)) and (ii) 3-class (left movement (28 samples)
v.s. right movement (30 samples) v.s. no movement (60
samples)). Samples were randomly divided into training
and test sets, 70% for training and 30% for testing. Ten-
fold cross validation was used in training set to ensure
the accuracy and generalization of the model. Accuracy
(ACC), Precision Rate (PR), Recall Rate (RE), and Area
Under Curve (AUC) were used to evaluate the model.

IV. Results
Raw data collected from our experiment were pre-

processed and segmented by EEGLAB, including 118
samples for left/right arm movement modes and no
movement mode in 63-channel EEG and 2-channel EMG
time series. NA-MEMD based Causal Decomposition
was applied to select EEG channels, by which RCSs
were calculated in each channel. The one-way ANOVA
analysis was then tested between movement and non-
movement modes. As a result, 13 EEG channels were
significantly caused the upper limb movement, whose
labels were followed by F3 (p=0.0206), FC1 (p=0.0496),
C3 (p=0.p0077), C4 (p=0.0043), T8 (p=0.0047), AF7
(p=0.0021), FCz (p=0.0336), PO6 (p=0.0045) for the left
mode, and T7 (p=0.044), C3(p=0.0028), M2 (p=0.0001),
F5 (p=0.0215), FCz (p=0.0301), C5(p=0.0354), PO8
(p=0.0439) for the right mode.

Each trial (2000-point time series) was segmented
according to time window, while obtaining 20 data
segments (100 data points) with no data overlapping.
Based on the data segment, RCS was obtained between
EEGs (13-channel) and EMGs (either left or right
biceps) time series, and the noise level parameter of NA-
MEMD based Causal Decomposition algorithm was set
to 0.01. Therefore, E and N values were accounted as
the causality based CFs for further classifications. The
training and test sets were randomly divided by Weka.
Ten-fold cross validation was also applied to the training
set to achieve the sophisticated model. Four classifiers
were trained and their performance on ACC, PR, RE
and AUC was evaluated (Table 1).

Multiple features were introduced to compose the
feature matrix. Based on CSP feature extractions, time
series data and their corresponding labels in the training
set were utilized to obtain the optimal spatial filter.
Then all data and labels in both training and test
sets were projected based on the established optimal
spatial filter, which generated 10× 118 feature matrix.
The proposed CFs were combined with CSP features to

feed into the four classifiers. The four classifiers were
trained and evaluated using CFs alone, CSP features
alone and the combination of CFs and CSP features
(Table 2). Results showed that the combined features
can achieve the accuracy of 94.3% in the test set and
89% in the ten-fold cross validation of the training set
in 3-class classification.

V. Discussions
EEG Channel selection is an important task not only

in AI applications related to EEG-EMG based hBCI
, but also in the nature of brain-muscle physiological
responses to Motor Execution and Motor Imaginary.
Effective Connectivity reflects the causality of observed
dependencies deeply with specific direction [14]. Most of
previous studies selected EEG channels related to ME by
correlation analysis [15]. However, this study suggested
an approach of NA-MEMD based Causal Decomposition
to avoid the redundancy of EEG channels for the detec-
tion of upper limb movements. The results showed and
confirmed that those selected EEG channels was almost
located in the region of M1 (C3 and C4), considered to be
the core area where the brain drives muscle movements.
In addition to the RCS values, most EEG channels on
the left arm movement show a significant difference in
the right hemisphere, and vice versa [1].

Different from previous research, this study also pro-
posed the use of the RCS obtained from NA-MEMD
based Causal Decomposition for feature extractions.
We first compare the differences between the proposed
feature extraction method and other methods, and then
compare the differences between different classifiers to
select the best classifier. The results shown in Table 1
and Table 2 indicated that the feature extract method
based on causality analysis performs well in the complex
dynamic EEG-EMG process, an accuracy of 91.4% in
cascaded and 80.0% in 3-class classification. Moreover, it
can be found that the combined feature matrix provided
a better performance on the 3-class test with 94.3% by
RF classifier, compared to 80% for CSP features alone.

However, outcomes of this study also were taken in
certain limitations. Limited by experimental conditions,
only one subject involved and few samples may lead to
potential risks in model training, although our study
did not use complex classifiers to avoid over-fitting and
enhance the interpretability of the model. In addition,
the parameters of classifiers have not been adjusted,
which meant that the obtained evaluation index may
be biased. Comparison of features extracted by different
causal analysis methods and a visualizing toolbox im-
plement (e.g., graphviz in Python) of proposed methods
will be improved in future work.

VI. Conclusion
In this study, NA-MEMD based Causal Decomposi-

tion method was introduced in the detection of upper
limb movement. The 63-channel EEG and 2-channel
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TABLE I
Overall classification performance by using CFs in the training and the test sets

Classifiers
Cascade 3-class
ACC(%) PR(%) RE(%) AUC ACC(%) PR(%) RE(%) AUC

Naive Bayes 87.3 / 91.4 87.5 / 91.6 87.3 / 91.4 0.934 / 0.935 81.4 / 80.0 81.5 / 80.0 81.4 / 80.0 0.902 / 0.890
SVM 84.7 / 85.7 84.8 / 85.9 84.7 / 85.7 0.847 / 0.858 74.6 / 68.6 74.1 / 69.1 74.6 / 68.6 0.831 / 0.815
KNN (K=3) 81.4 / 85.7 81.4 / 85.9 81.4 / 85.7 0.848 / 0.879 66.1 / 68.6 65.6 / 72.0 66.1 / 68.6 0.767 / 0.803
RF 82.2 / 85.7 82.3 / 85.8 82.2 / 85.7 0.902 / 0.925 77.1 / 71.4 75.6 / 70.6 77.1 / 71.4 0.890 / 0.875

The left side of / indicated outcomes on the training set via ten-fold cross validation, the right side of which was that based on the
test set.

TABLE II
Overall classification accuracy by using CFs alone, CSP features alone and the combination of CFs and CSPs in the training and the

test sets (%).

Classifiers

Training sets via ten-fold cross validation Test sets
Cascade 3-class Cascade 3-class
CF CSP [CF CSP] CF CSP [CF CSP] CF CSP [CF CSP] CF CSP [CF CSP]

Naive Bayes 87.3 100 100 81.4 80.5 89 91.4 100 100 80 80 88.6
SVM 84.7 100 100 74.6 81.4 85.6 85.7 100 100 68.6 85.7 85.7
KNN (K=3) 81.4 100 100 66.1 83.1 86.4 85.7 100 100 68.6 77.1 85.7
RF 82.2 100 100 77.1 84.7 87.3 85.7 100 100 71.4 80 94.3

EMG were collected. The causality of each EEG channel
with EMG was calculated and statistically analyzed by
one-way ANOVA, which concluded that 13-channel EEG
distributed near M1 were related to certain movement.
The time series data from selected channels were seg-
mented, and causality features were generated. Those
were used to train the model by the NB classifier and
performed an accuracy in cascaded for 91.4% and 3-
class for 80%. Furthermore, they were also compared to
CSP features, which would further improve the accuracy
in 3-class identification (from 80% to 94.3%). The NA-
MEMD based Causal Decomposition approach would be
a new guidance to recognize motor behaviors and develop
an EEG-EMG based hBCI system for AI applications.
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