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Abstract— The present study investigates the differences
in autonomic nervous system (ANS) function and stress
response between patients with major depressive disorder
(MDD) and healthy subjects by measuring changes in ANS
biomarkers. ANS-related parameters are derived from various
biosignals during a mental stress protocol consisting of a
basal, stress, and recovery phase. The feature set consists of
ANS biomarkers such as the heart rate (HR) derived from
the electrocardiogram, the respiratory rate derived from
the respiration signal, vascular parameters obtained from a
model-based photoplethysmographic pulse waveform analysis,
and cardiorespiratory coupling indices derived from the joint
analysis of the heart rate variability (HRV) and respiratory
signals. In particular, linear cardiorespiratory interactions
are quantified by means of time-frequency coherence, while
interactions of quadratic nonlinear nature between HRV and
respiration are quantified by means of real wavelet biphase.
The intra-subject difference of a feature value between two
phases of the protocol, the so-called autonomic reactivity, is
considered as a ANS biomarker as well. The performance of
ANS biomarkers on discriminating MDD patients is evaluated
using a classification pipeline. The results show that the most
discriminative ANS biomarkers are related with differences in
HR and autonomic reactivity of both vascular and nonlinear
cardiorespiratory coupling indices. Differences in autonomic
reactivity imply that MDD and healthy subjects differ in their
ability to cope with stress. Considering only HR and vascular
characteristics a linear support-vector machine classifier yields
to accuracy 72.5% and F1-score 73.2%. However, taking
into account the nonlinear cardiorespiratory coupling indices,
the classification performance improves, yielding to accuracy
77.5% and F1-score 78.0%.

Clinical relevance— Changes in the nonlinear properties of
the cardiorespiratory system during stress may yield additional
information on the assessment of depression.

I. INTRODUCTION

Major depressive disorder (MDD) is the most common
mood disorder and the leading cause of disability world-
wide [1]. MDD symptoms can range from insomnia, weight
loss, or loss of interest to suicidal behavior [2]. Such
symptoms can be understood as the consequence of stressful
experiences interacting with the genetic predisposition and
personality of an individual [3]. It is no coincidence that
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more than 40% of depressed patients suffer from concurrent
anxiety, fact that has been associated with worse outcome [4].

The last decades significant research has been carried out
towards the assessment of stress responsiveness in MDD
patients [5]. The acute physiological response to stress is
initiated by changes in the autonomic nervous system (ANS).
These changes are known as autonomic reactivity and they
reflect the ability of an individual to cope with stress [6].
Current research points out that depression is related with
autonomic dysfunction and reduced autonomic reactivity
during challenging situations [7].

Various ANS biomarkers have been explored for assess-
ing autonomic reactivity, with heart rate variability (HRV)
indices being the most common ones [8]. Besides HRV,
vascular characteristics provide valuable information about
the autonomic control of the cardiovascular system. Arterial
stiffness measured by photoplethysmographic (PPG) pulse
waveform characteristics has been associated with autonomic
dysfunction in patients with depression [9]. Recent studies
support that respiratory activity can be also altered by
emotional states such as sadness and anxiety [10]. However,
respiratory information has seldom been taken into account
by former HRV approaches in depression.

Joint analysis of respiration and HRV may yield additional
information on linear and nonlinear properties of the car-
diorespiratory system. Nonlinear coupling between cardio-
vascular and respiratory systems arises from interactions via
feed-forward and feed-back mechanisms, which are influ-
enced by the activity of higher brain regions [11]. Previous
studies have reported differences in both linear and nonlinear
cardiorespiratory interactions during ANS changes induced
by mental stress [12], [13]. Differences in cardiorespiratory
coupling function between healthy and MDD subjects might
add clinical value to the assessment of depression. In this
study, our main interest is to combine ANS biomarkers from
various sources to improve the discrimination of patients with
depression.

II. MATERIALS

Forty MDD patients and forty healthy control (HC) sub-
jects matched in age, sex, and body mass index were
recruited at the Hospital Clı́nico Lozano Blesa (Zaragoza,
Spain) and the Mental Health Unit of the Hospital Sant Joan
de Déu (Barcelona, Spain), under clinical studies PI16-0156
and PIC-148-16, respectively. Written informed consent was
received from all subjects in accordance with the Decla-
ration of Helsinki. Participants underwent a mental stress
protocol which comprises (a) a basal phase B during which
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the subjects were filling psychometric tests, (b) a stressful
phase S during which the subjects were performing the Trail
Making Test, and (c) a recovery phase R during which the
subjects were requested to relax after the execution of the
cognitive test. Further details concerning the design of the
stress protocol can be found elsewhere [9].

For each participant, three orthogonal ECG leads were
recorded at 1000 Hz, a non-dominant hand fingertip PPG
signal, and a respiratory signal with belt were recorded
at a sampling frequency of 250 Hz . All signals were
synchronously recorded using the Medicom system (ABP10
module of Medicom MTD, Ltd, Russia).

III. METHODS

1) ANS biomarkers: A HRV signal x(t), sampled at 4 Hz,
is generated based on the integral pulse frequency modula-
tion (IPFM) model using the time series of beat occurrence,
detected on Y-lead of the ECG [14]. The respiratory signal
y(t) is downsampled to 4 Hz. Then, x(t) and y(t) are
subjected to bandpass filtering in the interval [0.04, 0.8] Hz.

The coupling between HRV and respiration is partially
related with the parasympathetic control of the heart and
lungs. The linear cardiorespiratory coupling is assessed using
the time-frequency coherence (TFC) [15]:

γ(t, f) =
|SXY(t, f)|

√

SXX(t, f)SYY(t, f)
, (1)

where SXX(t, f), SYY(t, f), and SXY(t, f), are time-varying
power spectral densities defined based on the Cohen’s class
distributions. The time percentage where TFC is above a
surrogate data-derived threshold is denoted Tγ [13].
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Fig. 1. The products of two oscillations that interact via a Q-L system.

Cardiorespiratory interactions give rise to several types
of coupling phenomena characterized either by frequency
and/or phase locking between the interacting oscilla-
tions [16]. If respiration controls HRV not only through a
linear, but also via a nonlinear function, new harmonics with
higher-order frequency and phase correlations will appear. A
component that arises from the interaction of two oscillations
f1 (φ1) and f2 (φ2) through a quadratic-linear (Q-L) system
(see Fig. 1) is characterized by the same relationship in both
frequency and phase. As a result, the phase of the component
at the sum of f1 and f2 i.e., f1 + f2, is φ1 + φ2. This
phenomenon is known as quadratic phase coupling (QPC)
and it can be quantified by means of real wavelet biphase
(RWB) [17]:

bΦ(f1, f2, t) =
1

T ′

∫ t+T ′/2

t−T ′/2

cos (ΦW(f1, f2, τ)) dτ, (2)

where ΦW(f1, f2, t) is the instantaneous wavelet biphase:

ΦW(f1, f2, t)=φx(f1, t) + φy(f2, t)− φx(f1+f2, t), (3)

with φx(f, t) and φy(f, t) being the phase of Continuous
Wavelet Transform of HRV and respiration, respectively.
Assuming that HRV is formed as the output of a Q-L system
with input respiratory oscillations among others, high val-
ues of RWB imply that φx(f1+f2, t) =φx(f1, t)+φy(f2, t),
which consists in the QPC requirement, i.e., synchronization
between the interacting oscillations.

Note that RWB is a function of two frequencies, un-
like the power spectrum. The regions in the bifrequency
domain where QPC will be assessed are defined based
on the respiratory rate fr(t), which is derived from y(t)
as described in [18]. QPC between respiratory sinus ar-
rhythmia (RSA) component of HRV and respiration is
identified in the region ΩR,R : {f1 ∈ ΩR, f2 ∈ ΩR}, where
ΩR = [fr(t)− 0.05, fr(t) + 0.05] Hz, while QPC between
low frequency (LF) components of HRV and respiration is
identified in the region ΩL,R : {f1 ∈ ΩL, f2 ∈ ΩR}, where
ΩL = [0.04, 0.15] Hz. The degree of QPC between the in-
teracting frequencies is quantified by,

CI(t) = max
f1,f2∈ΩI

{bΦ(f1, f2, t)}, (4)

where I = {[L,R], [R,R]}. QPC values that do not exceed a
surrogate data-derived threshold are suppressed [17].

Furthermore, the time-varying mean heart rate (HR) signal
dHRM(t) of the IPFM model is also subjected to analysis.
Besides the joint analysis of HRV and respiratory signals,
a model-based PPG waveform analysis is carried out for
deriving ANS biomarkers. The i:th pulse is decomposed into
a main wave and two reflected waves as described in [9]. The
percentage of amplitude loss in the second reflection A13(i)
is subjected to analysis, and it is defined by,

A13(i) =
A1(i)−A3(i)

A1(i)
· 100%, (5)

where A1(i) and A3(i) are the amplitudes of the main and
the second reflected wave, respectively.

2) Feature selection: For each subject, the temporal mean
is used for a feature F defined on a beat-to-beat or pulse-to-
pulse basis, or with time dependence, to assign a unique
value F̄ P at each phase P ∈ {B, S, R}. The feature
set consists of various ANS biomarkers including the pa-
rameters derived from the ECG (d̄ P

HRM) or the respiratory
signal (f̄ P

r ), characteristics associated with the linear (T P
γ )

or nonlinear cardiorespiratory interactions (C̄P
I), as well as

vascular parameters (ĀP
13). The intra-subject difference of

a feature from basal to recovery, denoted ∆(F)B
R

, or from
stress to recovery, denoted ∆(F)

S

R
, which reflect autonomic

reactivity, are also considered ANS biomarkers. To avoid the
curse of dimensionality, a stepwise linear regression (SLR)
approach is employed for reducing the dimension of the
feature set [19]. The inclusion or removal of features is
carried out considering a statistically significant (p < 0.01)
improvement of a linear model that contains only an inter-
cept.
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3) Classification: The performance of ANS biomarkers
on the assessment of depression is evaluated using the fol-
lowing classification scheme. ANS biomarkers are fed into a
classification pipeline that reaches a decision on the subject’s
status (MDD/HC). A leave-one-subject-out (LOSO) scheme
is employed to evaluate the discrimination potential of the
proposed approach. Each selected feature is normalized to
zero-mean and unit variance. Note that the left-out subject is
excluded from the calculation of the sample mean and stan-
dard deviation. Eventually, the LOSO scheme is completed
when all subjects are left out and afterwards evaluated against
MDD. A linear support-vector machine classifier (SVC) [20]
and a logistic regression classifier (LRC) [21] are examined.
Classification performance is evaluated in terms of accuracy
(ACC) and F1-score (F1).

Differences in ANS biomarkers between MDD patients
and HC subjects are also assessed using the area under the
curve (AUC) of the receiver operating characteristic curve,
which measures the degree of separability between groups.

IV. RESULTS

The most discriminative ANS biomarkers, which were
selected using the SLR method, are related with HR and
autonomic reactivity of both vascular and nonlinear car-
diorespiratory coupling indices. On the contrary, indices
associated with the linear cardiorespiratory coupling and
respiratory rate were not chosen. The classification results
are summarized in Table I. In particular, SVC offers the best
performance, compared to LRC, when all selected features
are combined, yielding ACC = 77.5% and F1 = 78.0%. It
should be noted that the classification performance of SVC
deteriorates of about 5% (in ACC and F1) when nonlinear
cardiorespiratory coupling indices are excluded from the
feature set. This implies that the nonlinear properties of the
cardiorespiratory system may yield additional information on
MDD classification. The AUC values of all ANS biomarkers
are summarized in Table II. Results show that changes in
ANS function quantified by autonomic reactivity indices are
associated with larger AUC values. Functional boxplots of
ANS biomarkers are shown in Fig. 2.

V. DISCUSSION

The present study investigates the discrimination potential
of ANS biomarkers in depression. ANS-related parameters
are derived from various biosignals during a mental stress
protocol. The response to stress is also evaluated by means
of autonomic reactivity.

Results show that MDD patients, compared to HC sub-
jects, exhibit higher HR values (Fig. 2(a)) and larger per-
centages of amplitude loss in reflected waves (Fig. 2(b)),
both yielding AUC=0.72 during R (Table II). This implies
that depression is associated with increased sympathetic ac-
tivity and ANS dysfunction. Similar findings have been also
reported in previous studies [7]. Differences between groups
are also observed for the respiratory rate (Table II), mainly
during the recovery phase R (AUC=0.63). Lower respiratory

TABLE I

CLASSIFICATION RESULTS

Features Metrics

d̄R
HRM ∆

(

Ā13

)S

R
∆

(

C̄R,R
)B

R
∆

(

C̄L,R
)S

R

ACC F1

(%) (%)

SVC X X X X 77.5 78.0

SVC X X 72.5 73.2

LRC X X X X 76.2 76.5

LRC X X 73.7 74.1

TABLE II

AUC VALUES OF ANS BIOMARKERS

B S R ∆( )B
R

∆( )S
R

d̄HRM 0.69 0.62 0.72 0.56 0.70

Ā13 0.63 0.69 0.72 0.72 0.77

f̄r 0.54 0.52 0.63 0.70 0.66

C̄R,R 0.65 0.71 0.61 0.71 0.76

C̄L,R 0.51 0.62 0.51 0.51 0.62

Tγ 0.53 0.50 0.51 0.51 0.54

rate (Fig. 2(c)) in HC compared to MDD group at the post-
task relaxation period indicates that patients with depression
recover at a less extent after stress exposure. In [22], it
was suggested that respiration focused training might be an
important tool assisting the treatment of depression.

Regarding cardiorespiratory coupling function during ANS
changes induced by the cognitive task, nonlinear indices
that reflect QPC between HRV and respiration (C̄R,R, C̄L,R)
show larger AUC values (Table II) compared to linear
cardiorespiratory coupling quantified by means of TFC (Tγ).
In particular, during S, HC subjects show an increased
synchronization between respiration and RSA component
of HRV (Fig. 2(d)) and a reduced synchronization between
respiration and LF component of HRV (Fig. 2(e)). These
results suggest that healthy individuals reacted more to the
stressful stimuli, while, in MDD group, small changes are
observed. Reduced ability to cope with stress in MDD
patients may be enhanced due to ANS dysfunction. Blunted
autonomic reactivity in MDD patients has been also reported
in previous works [7], [8], [13].

Large AUC values for most of autonomic reactivity in-
dices (Table II) suggest that stress response can be used
to assess depression. ANS biomarkers, including HR, and
autonomic reactivity indices of both vascular and nonlinear
cardiorespiratory coupling indices, show a high diagnostic
performance (Table I) for classifying subjects as having
MDD or not. A reduction in the discriminative power of
ANS biomarkers when the nonlinear interactions between
HRV and respiration are not taken into account implies that
nonlinear properties of the cardiorespiratory system may
yield additional information on the assessment of depres-
sion. Previous studies involving MDD patients showed that
entropy measures of cardiorespiratory coupling can be also
used to assess depression [23].
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Fig. 2. Functional boxplots of ANS biomarkers. (a) Heart rate, (b) percentage of amplitude loss in the second reflection, (c) respiratory rate, (d) QPC
degree between RSA component of HRV and respiration, (e) QPC degree between LF component of HRV and respiration, and (f) time percentage of linear
cardiorespiratory coupling.

VI. CONCLUSIONS

Differences in ANS function and stress response between
MDD and healthy individuals can add a clinical value to
the assessment of depression. The discrimination potential
of ANS biomarkers in depression is higher when nonlinear
interactions between respiration and HRV are taken into
consideration, suggesting that nonlinear properties of car-
diorespiratory coupling function may add complementary
information on MDD classification.
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