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Abstract— Detecting low cognitive scores at an early stage
is important for delaying the progress of dementia. Inves-
tigations of early-stage detection have employed automatic
assessment using dual-task (i.e., performing two different tasks
simultaneously). However, current approaches to dual-task-
based detection are based on either simple features or limited
motion information, which degrades the detection accuracy. To
address this problem, we proposed a framework that uses graph
convolutional networks to extract spatio-temporal features from
dual-task performance data. Moreover, to make the proposed
method robust against data imbalance, we devised a loss
function that directly optimizes the summation of the sensitivity
and specificity of the detection of low cognitive scores (i.e.,
score≤ 23 or score≤ 27). Our evaluation is based on 171 subjects
from 6 different senior citizens’ facilities. Our experimental
results demonstrated that the proposed algorithm considerably
outperforms the previous standard with respect to both the
sensitivity and specificity of the detection of low cognitive scores.

I. INTRODUCTION

The number of people with dementia has increased sub-

stantially in recent years [1], which has created a severe

burden on nursing systems. Dementia is a progressive dis-

ease, causing declines in such areas as memory, behavioral

ability, and language skills. Although dementia is incurable,

early intervention could effectively delay its progression

[2]. Accordingly, early detection of low cognitive scores,

which is an important warning sign of cognitive impairment,

facilitates the prevention of dementia.

Traditional approaches to low-cognitive-score detection

have employed paper tests, such as the Montreal Cognitive

Assessment [3], Mini-Cog test [4], and Mini-Mental State

Examination (MMSE) [5]. These examinations are lists of

questions for evaluation of cognitive status. However, their

questions are fixed and easy to memorize, limiting their use

for daily measurements. Moreover, those paper-based exams

require on-site questioners and take time to implement [6].

To address these issues, cognitive assessments based on dual-

task performance, which combines cognitive and behavioral

tasks, was proposed for detection of low cognitive status [7]–

[9]. For example, Ahman et al. proposed a dual-task that

requires subjects to walk while naming different animals or

reciting months in reverse order [10].
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Machine learning techniques have also been used in dual-

task-based detection of low cognitive scores. Boettcher et al.

applied support vector machine (SVM) [11] to dual-task-

based detection of mild cognitive impairment (MCI) [12].

Similarly, Matsuura et al. used a dual-task composed of

onset stepping and two-digit addition/subtraction. Because

the calculation questions are generated randomly, that dual-

task is suitable for daily measurements [13]. In that work, a

12-dimensional feature vector was extracted from the dual-

task performance data, and then various machine learning

methods such as SVM, random forest, and shallow neural

networks were applied to detect low cognitive scores [13].

This method achieved high sensitivity and specificity on a

database of subjects from three facilities operated by the

same company. The three facilities shared the same routines

and brain training programs for older adults, leading to

similarity of the data between the three facilities. Therefore,

the performance of their approach was worse on a larger

dataset containing various subjects with different lifestyles

from a larger number of facilities [13].

In summary, the previous studies had two major problems.

First, the locomotive features were pre-designed, making

it difficult to acquire complete motion information from

various databases. Second, the traditional machine learning

techniques they used have limited learning ability, especially

when the training data are imbalanced. To address these

issues, we proposed a framework for detecting low cogni-

tive scores based on a spatio-temporal graph convolutional

network (ST-GCN) [14] with a loss function specifically

designed to handle imbalanced data. The contributions of

this paper are threefold:

(1) Dual-task gait analysis using ST-GCN: We applied ST-

GCN using joints of the whole 3D skeleton to extract spatio-

temporal gait features from dual-task performance data, and

then computes high-level features by deep convolution.

(2) Sensitivity+specificity loss for imbalanced data: We

designed a loss function that directly optimizes the summa-

tion of sensitivity and specificity to address the problem of

data imbalance for the proposed framework.

(3) Comprehensive experimental validation using a cross-

facility database: Because the proposed approach is data-

driven, it had much better performance on the cross-facility

database than the method of the previous work [13].

II. RELATED WORK

A. Dual-task-based detection of low cognitive scores

Performing a dual-task (i.e., two tasks simultaneously) im-

poses a heavier cognitive load than performing a single task,
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Fig. 1. Spatial and temporal convolution implemented by ST-GCN on
both single and sequential data: the green and black ovals show examples
of temporal and spatial convolutions, respectively.

especially for people with low cognitive scores. Therefore, a

dual-task can effectively detect subjects with low cognitive

scores [10]. Performance on a dual-task has been shown to

reflect trends of dementia and MCI well [10]. Because gait

disorder is connected with low cognitive scores [15], it is

preferable to involve walking or stepping in real dual-task-

based applications [10], [13].

B. Skeleton-based action recognition

Although it has a different purpose, skeleton-based action

recognition [16], [17] is relevant to our work, because we

also analyze the 3D skeleton sequence during dual-task

performance. Before the deep-learning era, methods of action

recognition depended on handcrafted features such as motion

patterns and trajectories [18]–[21], resulting in limited gener-

alization capability [22]. Thereafter, the ST-GCN architecture

was proposed to solve this problem [14]. To use whole skele-

ton data, it employs a two-directional graph convolution, as

shown in Fig. 1. This expresses the relationships between

adjacent joints, and the connections among adjacent frames.

Because of the high efficiency with which it expresses

3D sequence data, ST-GCN has been widely used in 3D

skeleton-based action recognition [23]–[25]. Similarly to

action recognition, conventional approaches to the detection

of low cognitive scores also suffer from the above-mentioned

problems with handcrafted features, and the representation of

gait features is particularly difficult [13]. Therefore, in this

study, we apply an ST-GCN to the detection of low cognitive

scores to improve its generalization capability.

Nevertheless, dual-task-based detection of low cognitive

scores is different from action recognition in some aspects.

For example, action recognition is based on a sequence of

locomotive data, and the features are extracted mainly from

the relationships between adjacent frames or adjacent joints.

In contrast, dual-task performance data contains several

different trials. Not only the relationship between adjacent

frames, but also the connections among different trials are

required to be considered in cognitive status assessment. This

is because people with low cognitive scores tend to perform

unstably when they repeat a dual-task several times. In

addition, sequential data of cognitive features are important

Fig. 2. The proposed framework for the regression of cognitive scores, and
the detection of potential dementia (i.e., cognitive score ≤ 23), and potential
MCI (i.e., cognitive score ≤ 27).

in the detection of low cognitive scores, Therefore, we

need a network that represents not only spatio-temporal gait

features, but also cognitive and cross-trial features.

C. Loss function for binary classification

Networks for binary classification often have two nodes

in the last layer, which encode the probabilities of positive

and negative, and the network parameters are trained by

minimizing a well-known cross-entropy loss function [26].

Besides the cross-entropy loss function, the contrastive loss

function [27] and triplet loss function [28] have been used for

pair inputs in several tasks such as biometric authentication.

These loss functions reduce the dissimilarity between sam-

ples of the same class and increase the dissimilarity between

samples of different classes.

Nevertheless, none of the above loss functions can solve

the problem of severe data imbalance between positive and

negative samples, which is the case in our research as shown

in Figs. 5(a) and 5(b). Kobayashi proposed a loss function

based on the F-measure to solve the data imbalance problem

[29]. However, that loss function has no direct relationship

to the specificity measure used in this study.

III. PROPOSED APPROACH

A. Overview of the proposed approach

We propose a framework for dual-task-based detection of

low cognitive scores using the ST-GCN. This framework can

also be used to regress cognitive scores. Figure 2 shows an

overview of the proposed approach, from data collection to

result generation. The dual-task used in this study consisted

of stepping and two-digit addition and subtraction, as in [13].

Each subject was requested to step on the yellow mat and

answer the questions shown on a front-facing display.

The detection of low cognitive scores based on a single-

trial datum is easily influenced by non-cognitive factors such

as the subject’s emotional and bodily situation. Furthermore,
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people with low cognitive scores tend to perform unstably

when they repeat the same dual-task. Therefore, exploiting

the relationships among different trials of dual-task perfor-

mance data can improve detection ability. In this study, each

subject’s sample consisted of three continuous trials. During

each trial of the dual-task process, the answering speed and

correct answer rate were recorded as cognitive data, and

the 3D skeleton joints captured by Kinect V2 were used as

motion data. We used a convolutional neural networks (CNN)

to extract high-level features of the three trial’s cognitive data

(a 12-dimensional vector). Further, three ST-GCNs, which

corresponded with each other by passing parameters, were

employed to extract the spatio-temporal features of the three

trial’s motion data. Finally, we used an aggregation network

to combine all of these intermediate outputs.

This framework fuses the features from multiple trials

automatically and outputs a score that assesses cognitive

status. The proposed approach can be used to detect potential

dementia (i.e., the score ≤ 23) or potential MCI (the score

≤ 27) by setting thresholds. Also, it can be directly used to

regress cognitive scores, as shown in Fig. 2. In the following

section, we will explain the proposed method in more detail.

B. Dual-task performance data sampling

We used a dual-task system proposed in previous works

[13], [30] to collect the raw data, as shown in Fig. 2.

Compared with MMSE examination, which takes an average

of 10 minutes, this dual-task system takes 80 seconds for

each measurement trial. Furthermore, it is totally automatic,

and its questions are generated randomly to facilitate easy

application to daily measurement. In each trial, this system

automatically implements a dual-task paradigm composed of

a 30-sec calculation, 20 seconds of on-site stepping, and a

30-sec dual-task (calculation while stepping), sequentially. In

total, three trials of 240-sec ((30+20+30)×3 = 240) were

sequentially collected for each sample.

As Fig. 2 shows, each sample consists of two types of data.

(1) Cognitive data: answering speed and correct answer rate

during both single and dual (both 30-sec) calculation tasks

for all the three trials; (2) motion data: 3D skeleton joints

during both single and dual (20-sec and 30-sec, respectively)

stepping tasks. The motion data were captured by Kinect V2,

which occasionally has the problem of missing detection.

Thus, we simply skipped the frames in which detection was

missed. Moreover, the Kinect system in each facility used

its own coordinates. To normalize the data from different

Kinect systems, we implemented camera calibration by the

random sample consensus (RANSAC) [31] algorithm as a

pre-processing step. That is, we first detected the floor or

roof plane from the depth image by RANSAC, and then

computed the rotation matrix between the floor/roof plane

and the horizontal plane, and finally implemented the camera

calibration based on the rotation matrix.

The subject’s MMSE scores were collected every 6

months. With respect to the detection, we focused on po-

tential dementia (i.e., MMSE≤ 23) and potential MCI (i.e.,

MMSE≤ 27). For the classification of potential dementia and

Fig. 3. Outline of layers of ST-GCN

non-dementia, participants with MMSE scores of ≤ 23 and

> 23 were labelled as positive and negative, respectively.

Similarly, for the distinction between potential MCI and

healthy people, participants with MMSE scores of ≤ 27 and

> 27 were labelled as positive and negative, respectively.

These positive or negative labels are used as the ground-

truth labels during training. In contrast, for cognitive score

regression, the MMSE scores were directly used as the

ground-truth for training.

C. Spatio-temporal feature extraction

In this section, we explain how we extracted the spatio-

temporal features from the dual-task motion data. Whereas

the cognitive features (i.e., correct answer rate and answering

speed) could be directly computed, the representation of gait

features from the motion data (e.g., frame sequences of 2D

images or 3D skeletons) was nontrivial. A possible method

of gait representation is to employ predesigned/handcrafted

features such as walking speed, step width symmetry angle,

step width, and normalized gait speed, which were computed

using gait analysis tools [32], [33]. However, the use of such

features has some drawbacks: they represent only certain

spatio-temporal aspects of gait, and they are not robust

against missing frames or outliers among the estimated skele-

tons. Another method is to represent gait features in a data-

driven way. ST-GCN [14] is one such data-driven method,

and it has been employed in action recognition research

to address the above-mentioned drawbacks of handcrafted

features [13]. We therefore employed it in our study.

Figure 3 shows an outline of the layers of the ST-GCN

used in this study. From each dual-task trial, we extracted

MS and MD continuous frames of single and dual stepping,

respectively, and used them as the inputs of the ST-GCN.

Our network differed from that of the conventional ST-

GCN [14] mainly in two ways, as shown in Fig. 2: (1)

we used parameter passing and an aggregation network with

multiple fully connected layers to fuse the high-level features

of the three trials’ motion data, and (2) we fused the motion

features with cognitive features by another fully connected

layer. Finally, for the binary classification task, the network

generated a scalar value s as the initial output, and then

classified it as positive (i.e., a subject whose ground-truth

MMSE ≤ 23 or ≤ 27) if the value is positive, otherwise

classified it as negative. For the regression task, the network

outputs a predicted MMSE as cognitive score.

D. Sensitivity+specificity loss

In the detection task, subjects with low cognitive scores

(i.e., MMSE≤23 or MMSE≤27) should be recognized as
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(a) Positive sample
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(b) Negative sample

Fig. 4. Probabilities and gradients per sample. The weight and denomina-
tors in Eq. 10 are omitted for simplicity. As the probability (i.e., f (s) and
1− f (s) for the positive and negative classes, respectively, shown by black
solid lines) approaches 0, the gradient with the original sigmoid function
(green dotted lines) asymptotically approaches 0 (i.e., vanishes). In contrast,
the probability predicted by the logarithmic version (blue dashed lines)
asymptotically approaches 1/−1 (i.e., does not vanish) for the positive and
negative classes, respectively.

positive, and vice versa. Given N as the total number of

samples in a mini-batch, the accuracy measure for detection

of low cognitive scores is defined as

Paccuracy =
NTP +NTN

N
=

NTP +NTN

NTP +NFP +NTN +NFN
, (1)

where NTP and NTN signify the numbers of correctly classi-

fied positive and negative samples, and NFP and NFN denote

the numbers of misclassified positive and negative samples.

A possible method of optimizing the network parameters

during training of the classifier is to maximize the accuracy.

However, there are generally fewer subjects with low cog-

nitive scores (i.e., positive samples) than those with high

cognitive scores (i.e., negative samples), as shown in Fig. 5.

Thus, the trained classifier is considerably biased. To address

this problem caused by data imbalance, we employ both

sensitivity and specificity, two important criteria for perfor-

mance evaluation in the detection of low cognitive scores.

Sensitivity and specificity denote the ability to correctly

detect positive and negative samples, respectively. Given NP

and NN as the numbers of positive and negative samples in

a mini-batch, sensitivity and specificity are defined as

Psensitivity =
NTP

NP
=

NTP

NTP +NFN
(2)

Pspecificity =
NTN

NN
=

NTN

NFP +NTN
. (3)

We then devised a sensitivity+specificity loss function, which

directly optimizes the summation of the predicted sensitivity

Psensitivity and specificity Pspecificity (i.e., Psensitivity+Pspecificity).

However, the above-mentioned loss function still has a

problem. Classification into positive/negative classes is done

by thresholding of the predicted scalar value s that assesses

the cognitive status, as described in the previous subsection.

Thus, the numbers NTP, NFN, NTN, and NFP change discretely

at the boundary s = 0, and as a result, the loss function is not

differentiable at the boundary s = 0. Moreover, the gradient

is always zero (i.e., vanishes) except for that at the boundary,

which is unfavorable for training with back-propagation.

Therefore, we relaxed the sensitivity and specificity into

probabilistic ones to make them differentiable. Specifically,

we introduced a sigmoid function for value s as

f (s) =
1

1+ exp(−s)
, (4)

and then consider two probabilities: f (s) and 1− f (s) for

the positive and negative classes, respectively. This indicates

that proportions of the sample equal to f (s) and 1− f (s)
belong to the positive and negative class, respectively. We

then computed the relaxed version of the sensitivity P̃sensitivity

and specificity P̃specificity for a mini batch with N samples as

P̃sensitivity =
1

NP
∑

i∈SP

f (si) (5)

P̃specificity =
1

NN
∑

i∈SN

(1− f (si)), (6)

where si is the score of the i-th sample in the mini-batch,

and SP and SN are sets of the indices of positive and

negative samples in the mini-batch. The loss function L that

is subsequently minimized is subsequently defined as

L = −(P̃sensitivity + P̃specificity)

= −

(

1

NP
∑

i∈SP

f (si)+
1

NN
∑

i∈SN

(1− f (si))

)

(7)

Although the loss function in Eq. (7) is differentiable

everywhere (see Fig. 4), it still has the vanishing gradient

problem at extreme predictions f (s) → {0,1}, which is

unfavorable for gradient-based optimization. Specifically, the

gradient with respect to the i-th sample is computed as

∂L

∂ si

=

{

1
NP

f (si)(1− f (si)) (i ∈ SP)

− 1
NN

f (si)(1− f (si)) (i ∈ SN)
. (8)

The gradient asymptotically approaches 0 as the probability

of the positive class f (si) or that of the negative class

1− f (si) approaches 0 (see Fig. 4). We therefore took the

logarithm of the sigmoid function, which solves the van-

ishing gradient problem as well as having a monotonically

increasing property. Furthermore, to suppress unstable update

within highly imbalanced mini-batches, we introduced a

mini-batch-wise weight. Specifically, we used the harmonic

mean of the numbers NP, NN of positive and negative samples

in the mini-batch, respectively, as the weight: w(NP,NN) =
2/(1/NP + 1/NN) = (2NPNN)/(NP +NN). This is similar to

one implementation of a F-measure-based loss function [34].

Given a mini-batch size of N = NP + NN, the weight is

maximized when the ratio of positive to negative samples

is completely balanced (i.e., NP = NN). The weight is min-

imized (i.e., w = 0) when the ratio of positive to negative

samples is completely imbalanced (i.e., NP = 0 or NN = 0),

which effectively mitigates the influence of imbalanced mini-

batches. Consequently, the logarithmic version of the loss

function with the mini-batch-wise weight is defined as

L̃=−w(NP,NN)

(

1

NP
∑

i∈SP

log( f (si))+
1

NN
∑

i∈SN

log(1− f (si))

)

. (9)

The gradient is then calculated by

∂ L̃

∂ si

=

{

w(NP,NN)
NP

(1− f (si)) (i ∈ SP)

−w(NP,NN)
NN

f (si) (i ∈ SN)
. (10)
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Fig. 5. Subject/sample statistics of 6 facilities with different MMSE scores.
Subjects/samples with low MMSE scores (score is less than or equal to 23)
are fewer than those with high MMSE scores (score is larger than 23).

The gradient does not asymptotically approach 0 (i.e.,

does not vanish). Instead, it approaches w(NP,NN)/NP and

−w(NP,NN)/NN for positive and negative samples, respec-

tively, as its probability approaches 0 (see Fig. 4). This is

favorable for the gradient-based optimization.

IV. EXPERIMENTS

In this section, we first describe our cross-facility database,

and then show the comparison results between the proposed

approach and an improved version of the previous method

[13] in terms of performance on cognitive scores regression,

and the detection of low cognitive scores.

A. Database

This study’s data were collected from 6 facilities for older

adults, where our dual-task system was installed for early-

stage detection of low cognitive scores. Some people in

these 6 facilities have brain training programs, but some

do not. The people in this database had different life-styles,

resulting in larger diversity compared with the database used

in [13]. Each person with one MMSE score was regarded as

a subject. In total, the data of 171 subjects and 3,217 samples

were collected. Each sample contains three continuous trials

of dual-task performance data. Notably, one subject may have

many samples because they completed the dual-task on a

daily basis. Figure 5(a) shows the distribution of subjects

who have different MMSE scores, and Fig. 5(b) shows the

distribution of samples with different MMSE scores. Fig. 5(a)

shows that the number of subjects with high MMSE scores

(score> 23) was greater than that with low MMSE scores

(score≤ 23), leading to an imbalance between positive and

negative data. The distribution in Fig. 5(b) illustrates that the

positive-negative data imbalance is more severe for samples.

This study was approved by the Research Ethics Com-

mittee of the Institute of Scientific and Industrial Research,

Osaka University (Osaka, Japan). All experiments were per-

formed in accordance with the guidelines and regulations.

Informed consent was obtained for all subjects.

B. Performance evaluation

In this section, we compare the proposed approach with

an improved version of the method by Matsuura et al.

[13]. Although a shallow neural network was used for

detection of low cognitive scores in [13], that method offers

no solution to the data imbalance problem. Therefore, we

improved that method using the LightGBM algorithm [35]

with SMOTE [36]. This yielded notably better results on

our cross-facility database with heavy data imbalance. The

SMOTE augmented data to ensure that the dataset has

the same numbers of samples with each MMSE score,

and LightGBM was used to predict MMSE scores from

dual-task performance data. Besides, Matsuura et al. used

a single trial of dual-task performance data for detecting

low cognitive scores, but we used three continuous trials

for better accuracy. To make a fair comparison, we also

implemented the use of the same three continuous trials

by the previous method [13]. As in the original version of

[13], we searched for the highest sensitivity+specificity value

in the receiver operating characteristic (ROC) curves given

by the improved implementation of [13] as a criterion for

comparison. Because the improved version of [13] was used

as the baseline method for evaluating the proposed approach,

we denote the improved version with three trials as the

“baseline method”. The predesigned features of the baseline

method are occasionally failed to be extracted because of the

instability of Kinect. In total, the baseline method failed in

86 trials. Therefore, we excluded those 86 trials from the

evaluation of the baseline method.

In our experiment, we first evaluated the performance

of cognitive score regression based on mean absolute error

(MAE) and root mean squared error (RMSE) to show the

effectiveness of the proposed ST-GCN-based framework.

Second, to demonstrate the effectiveness of the proposed

framework as well as the sensitivity+specificity loss function,

we evaluated the performance of the detection of low cog-

nitive scores based on binary classification (i.e., the classifi-

cations of potential dementia (MMSE≤ 23) / non-dementia

and potential MCI (MMSE≤ 27) / healthy person). Here,

we used the accuracy, sensitivity, and specificity (defined in

Eqs. 1-3) to evaluate detection performance. The training of

the proposed framework was implemented on a GPU with

48G of memory. The learning rate of each ST-GCN was set

to 0.1, and the dropout value was set to 0.8. In addition,

the numbers of frames in the single and dual tasks were set

to MS = 160 and MD = 260, respectively, to ensure that the

extracted frames contained several gait cycles.

In the first comparison with respect to cognitive score

regression, we used the mean square error loss for regressing

cognitive scores because either the cross-entropy loss or the

proposed sensitivity+specificity loss is suitable for classifica-

tion, but neither are suitable for regression. Here, we compare

the performance of the proposed approach with that of the

baseline method [13] using data from one trial and three con-

tinuous trials, respectively. Table I shows MAE and RMSE

of the compared approaches, illustrating that the baseline

method using three continuous trials’ data for each sample

achieved slightly better results than that using one trial’s data

for each sample. Thus, in the following experiments, we used

the baseline method with three continuous trials’ data for

each sample to evaluate the proposed approach.
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TABLE I

COMPARISON RESULTS OF COGNITIVE SCORE REGRESSION. BOLD

FONTS INDICATE THE BEST ACCURACY AMONG METHODS. THIS

CONVENTION IS USED THROUGHOUT THIS PAPER.

Method MAE RMSE

Baseline method (1 trial) 2.71 3.75

Baseline method (3 trials) 2.67 3.67

Proposed method 1.81 2.88

(a) Absolute error (b) Signed difference

Fig. 6. Significant differences of the absolute errors and signed difference
(difference between the predicted and ground-truth MMSE scores) using the
baseline and proposed methods (p < 0.01).

Figure 6(a) shows that there was a significant difference

between the absolute errors of the baseline and proposed

methods using three continuous trials’ data for each sam-

ple. We also computed the signed difference between the

predicted and ground-truth MMSEs to determine the bias of

the predictions. Figure 6(b) shows that there was a significant

difference between the signed differences computed from the

compared algorithms under the same conditions as Fig. 6(a).

These figures were created using the analysis of variance

method (ANOVA [37]). In Fig. 6(b), the scores were severely

underestimated by the baseline method, probably because

the handcrafted features cannot express the correct motion

information. From Table I and Figs. 6(a) and 6(b), we

conclude that the proposed method significantly outperforms

the baseline method in terms of both the MAE and RMSE.

This is consistent with our analysis that the proposed ST-

GCN-based framework has more expressive power than the

handcrafted-feature-based method. Moreover, the proposed

algorithm is totally data-driven, so that it performs well on

our cross-facility database.

With respect to the detection of low cognitive scores

based on binary classification, we not only compared the

proposed approach with the baseline method [13], but also

compared the proposed sensitivity+specificity loss and the

original cross-entropy loss functions. Table II shows the

comparison results of the detection of potential dementia

(i.e., MMSE≤ 23) and potential MCI (i.e., MMSE≤ 27),

using the baseline and proposed methods. Table II shows

that the proposed approach outperforms the baseline method

considerably in terms of most aspects of the accuracy,

sensitivity, and specificity of both potential dementia and

MCI detection. Comparing the results with vs. without

the proposed sensitivity+specificity loss, the proposed loss
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Fig. 7. Comparison between the ROC curves of the baseline and proposed
methods for potential dementia/MCI detection.

function achieved a better balance between sensitivity and

specificity than the original cross-entropy loss.

Finally, we compare the ROC curves of the baseline

and proposed methods to examine the relationship between

sensitivity and specificity. Figures 7(a) and 7(b) show the

comparison results for the detection of potential dementia

(i.e., MMSE≤ 23) and potential MCI (i.e., MMSE≤ 27),

respectively. Compared with the baseline method, the pro-

posed approach achieved a higher upper limit of sensitiv-

ity+specificity. In summary, the results demonstrated that

the proposed approach is more efficient at both cogni-

tive score regression and low-cognitive-score detection than

the baseline method. Furthermore, the proposed sensitiv-

ity+specificity loss function is more robust against data

imbalance than the original cross-entropy loss.

V. DISCUSSION

In this section, we discuss the limitations of the proposed

method and directions for future improvement. The proposed

approach has two limitations: (1) The graph convolution is

only implemented among adjacent joints, as shown in Fig. 1;

(2) The use of only parameter passing and an aggregation

network is not sufficient to extract the cross-trial features.

Regarding the first limitation, joints that are not adjacent

may nevertheless have strong relationships. For example,

cognitive impairment may impact people’s motor coordina-

tion capability, leading to difficulty maintaining good corre-

spondence between the hands and legs. Therefore, a graph

convolution considering the relationships between all pairs

of joints would be a promising direction for performance

improvement. With respect to the second limitation, the

parameter passing and aggregation network used to extract

the cross-trial feature is not sufficient. For example, the

differences between the statistical features of different trials

cannot be extracted by the current system. A middle hidden

network that connects each of the middle output features

between different trial’s data would be preferable, as this

could exploit strong cross-trial features.

VI. CONCLUSIONS

In this study, we proposed an approach for both cognitive

score regression and low-cognitive-score detection based

on MMSE. Although the MMSE score is not a definite
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TABLE II

COMPARISON RESULTS OF COGNITIVE IMPAIRMENT DETECTION. ACC, SEN, AND SPEC INDICATES ACCURACY, SENSITIVITY, AND SPECIFICITY.

Method \Detection target, evaluation items
Potential dementia (i.e., MMSE ≤ 23) Potential MCI(i.e., MMSE ≤ 27)
Acc Sen Spec Sen+Spec Acc Sen Spec Sen+Spec

Baseline method 0.78 0.77 0.77 1.54 0.81 0.92 0.71 1.63

ST-GCN w/ cross-entropy loss 0.78 0.91 0.73 1.64 0.86 0.92 0.81 1.73

ST-GCN w/ sensitivity+specificity loss (proposed) 0.80 0.85 0.79 1.64 0.88 0.92 0.84 1.76

diagnosis, identifying the decline in MMSE score at the

earliest possible stage is crucial for early diagnosis. Because

the MMSE cannot be used as a daily monitoring tool, we

proposed this dual-task-based system for monitoring the

cognitive status of older adults in 6 facilities. In contrast to

previous studies that used predesigned locomotive features

and traditional machine learning methods [13], [32], [33],

the proposed approach applied the ST-GCN to extract spatio-

temporal locomotive features, fully exploiting the available

3D skeleton information. Furthermore, we proposed a sensi-

tivity+specificity loss function for the proposed networks to

directly optimize the summation of sensitivity and specificity

of the detection of low cognitive scores. The experimental

results demonstrated the proposed method’s effectiveness at

solving positive-negative data imbalance. In our future work,

we will design a graph convolution network that considers

both adjacent and non-adjacent joints. We will also focus on

connecting dual-task performance with definite diagnoses.
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