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Abstract— Multi-parametric MRI is part of the standard 

prostate cancer (PCa) diagnostic protocol. Recent imaging 

guidelines (PI-RADS v2) downgraded the value of Dynamic 

Contrast-Enhanced (DCE)-MRI in the diagnosis of PCa. A 

purely qualitative analysis of the DCE-MRI time series, as it is 

generally done by radiologists, might indeed overlook 

information on the microvascular architecture and function. In 

this study, we investigate the discriminative power of 

quantitative imaging features derived from texture and 

pharmacokinetic analysis of DCE-MRI. In 605 regions of 

interest (benign and malignant tissue) delineated in 80 patients, 

we found through independent cross-validation that a subset of 

quantitative spatial and temporal features extracted from DCE-

MRI and incorporated in machine learning classifiers obtains a 

good diagnostic performance (AUC = 0.80-0.86) in 

distinguishing malignant from benign regions.  

 
Clinical Relevance— These findings highlight the underlying 

potential of quantitative DCE-derived radiomic features in 

identifying PCa by MRI.  

I. INTRODUCTION 

Prostate cancer (PCa) is the most common cancer type in 
the male population in the western world [1], and the second 
cause of cancer-related death in men worldwide. Imaging is a 
crucial diagnostic element to detect and localize the disease 
and thus define the best treatment option. Multi-parametric 
Magnetic Resonance Imaging (mpMRI), comprising of 
anatomical (T2w) and functional images (Diffusion-Weighted 
Imaging, DWI and Dynamic Contrast Enhanced, DCE), is the 
standard diagnostic imaging modality. While DWI probes the 
diffusion of water molecules and provides a surrogate measure 
of cellular density, DCE dynamically monitors the distribution 
of a contrast agent within the prostate microvasculature and 
how it extravasates into the interstitium, thus providing an 
opportunity to assess microvascular perfusion and 
permeability. DCE-MRI is used to study cancer angiogenesis, 
i.e. the formation of a vascular network supporting tumor 
growth.  In cancerous tissue, the vasculature is characterized 
by an irregular and inefficient structure, with higher tortuosity, 
permeability, and microvascular density in comparison to 
benign tissue [2]. On DCE-MRI, PCa is typically characterized 
by fast wash-in and wash-out of the contrast agent, whereas 
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benign tissue shows a more gradual uptake and wash-out. A 
dynamic study of the signal enhancement in time, i.e. time-
intensity curves (TIC), can in this way be used to distinguish 
malignant from benign tissue. The value of DCE-MRI for PCa 
detection has been debated [3,4], and the role of this imaging 
sequence in the most recent radiological guidelines (PI-RADS 
v2) is marginal [5]. However, traditional methods to assess 
DCE-MRI are limited to a qualitative assessment of the DCE 
time loop, which might be of challenging interpretation. On 
the other hand, quantitative assessment of DCE-MRI is 
possible and may provide a more effective way to evaluate 
DCE-MRI. This is frequently performed using 
pharmacokinetic (PK) analysis with the Tofts model (TM) [6]. 
An alternative method for PK analysis is dispersion MRI 
(MRDI), which has shown promising initial results for the PCa 
localization [7].  

Radiomics is an imaging analysis approach in which a high 
number of quantitative features are extracted from medical 
images [8]. Radiomic analysis in the context of oncology is 
typically used as a method to noninvasively and quantitatively 
describe tumor phenotypes. 

In this study, we investigate the diagnostic potential in 
identifying PCa using radiomic features obtained from texture 
analysis of three different DCE time points, in conjunction 
with DCE-MRI-derived PK imaging features from both TM 
and MRDI.  

II. MATERIALS AND METHODS 

A. Data Acquisition 

MRI data from patients treated at the Amsterdam 
University Medical Center (AMC), The Netherlands Cancer 
Institute (NKI), and Radboudumc (RUMC) were 
retrospectively collected after review-board approval. All 
patients had systematic biopsy-proven prostate cancer and 
underwent a clinical DCE-MRI examination prior to radical 
prostatectomy. Characteristics of the MRI examinations were 
institution-dependent. These are described in detail in a 
previously published article [9].  

Histopathology analysis was performed on prostate 
specimens after surgical resection. Cancer areas were marked 
by a pathologist and, based on the pathology reports, the 
malignant and benign ROIs were delineated on MRI. Prostate 
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contours were manually drawn on each MRI slice by a 
technical expert. 

B. Temporal analysis 

DCE-MRI data were processed using Matlab (Matlab, 

version 2017a, MathWorks). TICs were extracted at each 

pixel within the prostate contours and were converted into 

concentration-time curves in accordance with the study by 

Schabel and Parker [10]. Information regarding the used 

contrast agent relaxivity times and values for prostate tissue 

relaxation can be found in [9]. Quantitative PK analysis of 

DCE-MRI was performed with the TM and MRDI.  

 

1) Tofts Model 

Using the TM [6], it is possible to estimate parameters 

related to tissue microvascular permeability such as the 

volume transfer constant between the intravascular and 

extravascular spaces (Ktrans), the fractional extravascular 

volume (ve), and the flux rate constant (kep = Ktrans / ve) 

characterizing leakage in the extravascular extracellular 

space. The one-compartment TM was applied as follows: 

 

𝐶𝑡(𝑡) =  𝐾𝑡𝑟𝑎𝑛𝑠 𝐶𝑝(𝑡) ∗  𝑒
−

𝐾𝑡𝑟𝑎𝑛𝑠

𝑣𝑒
 𝑡

 ,     (1) 

 

where Ct(t) is the tissue concentration at time t, ve is the 

extravascular volume fraction, and Cp(t) is the blood plasma 

concentration at the capillary-tissue exchange site, substituted 

by an arterial input function (AIF) measured in an ROI in the 

iliac artery. Details on the extraction and usage of the AIF can 

be found in [9]. 

 

2) Dispersion MRI 

In MRDI, the transport of the contrast agent within the 

vasculature can be described by a convective dispersion 

model [11]. A local solution of this model, the modified local 

density random walk, provides the intra-vascular contrast 

concentration, Ci(t). As described in [9], this model 

circumvents the need for AIF estimation, and a reduced 

dispersion model can be used to calculate the 

pharmacokinetic parameters: 

 

𝐶𝑖(𝑡) = α ∗ 𝐾𝑡𝑟𝑎𝑛𝑠√
𝑘𝑑

2𝜋 (𝑡−𝑡0)
 𝑒

−𝑘𝑑(𝑡−𝑡0−𝑇𝑖)2

2(𝑡−𝑡0) ∗ 𝑒𝑘𝑒𝑝𝑡  ,   (2) 

 

where Ti is the intravascular mean transit time between the 

injection and detection sites, α is the time integral of Ci(t), t0 

is the theoretic injection time, and kd is the dispersion 

parameter. The model allows the estimation of the flux rate 

kep, a surrogate of microvascular leakage, and the dispersion 

parameter kd, which is determined by the underlying 

microvascular architecture and used as a marker to assess 

cancer-induced vascular changes [2, 7, 12]. As a separate 

estimation of Ktrans is not possible, the parameter A = α*Ktrans 

is in turn investigated. 

 

C. Spatial analysis 

To summarize the spatial characteristics of benign and 

malignant tissue, the median value in the ROIs was computed 

for all quantitative PK maps obtained from both TM and 

MRDI. In addition, a radiomic analysis was used to describe 

the higher-order spatial characteristics of the delineated 

benign and malignant ROIs in different time points of the 

DCE series (Section F. Feature extraction). The extracted 

radiomic features encompassed global texture parameters (i.e. 

variance, skewness, and kurtosis), and gray-level matrix-

derived characteristics (GLCM, GLRLM, GLSZM, and 

NGTDM) – Table I. A detailed explanation of the extracted 

features and their origin can be found in [13]. 

 

F.  Feature extraction 

Matlab (Matlab, version 2020a, MathWorks) was used to 

extract imaging features. From MRDI, the median kd, kep, A, 

µ, and t0 values were calculated for every ROI. The median 

Ktrans, kep, and ve as extracted from the TM were also computed 

per ROI.  

Per patient, three-time points in DCE TIC were defined as 

to capture: 1) the wash-in (DCE_wi), 2) the peak 

enhancement (DCE_pe) and 3) the wash-out (DCE_wo) of 

the contrast agent. Region-based 2D radiomic features were 

extracted for each DCE time point using the open-source 

radiomics toolbox published by Vallières et al. [13].  

Voxels were analyzed at an isotropic grid of 1 mm. For 

the computation of global textural features, histograms with 

100 bins were used for image discretization. Texture features 

were computed using a sliding window approach (window 

size=15 pixels, stride = 3), the Loyd quantization algorithm, 

and 64 gray-levels. A spatial convolution was applied to 

convert the obtained feature maps back to the images’ original 

size. The final features provided to the classifiers consisted of 

the median value for the respective benign and malignant 

ROIs.  

TABLE I.  EXTRACTED IMAGING FEATURES.  

Imaging Feature 
type 

Feature name 

Tofts and 

MRDI 

 

Median 

value  

kd, kep, A, Ti, t0, 

Ktrans, kep Tofts, ve Tofts 

DCE time 

point t 

(DCE_wi, 

DCE_pe, and 

DCE_wo) 

 

Global 

texture 

Variance, Skewness 

Kurtosis 

GLCM 

matrix 

Energy, Contrast, Entropy, 

Homogeneity, Correlation, Sum 
average, Variance, Dissimilarity, Auto 

Correlation 

GLRLM 
matrix 

SRE, LRE, GLN, RLN, RP, LGRE, 
HGRE, SRLGE, SRHGE, LRLGE, 

LRHGE, GLV, RLV 

GLSZM 

matrix 

SZE, LZE, GLN, ZSN, ZP, LGZE, 

HGZE, SZLGE, SZHGE, LZLGE, 

LZHGE, GLV, ZSV 

NGTDM 

matrix 

Coarseness, Contrast, Busyness, 

Complexity, Strength 
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G.  Feature selection and model definition 

Python 3.8.3 with the scikit-learn machine learning 

toolbox was used to implement feature selection and model 

optimization. All features were scaled by subtracting the 

median and scaling the data according to the interquartile 

range. This method provides increased robustness against 

outliers and is implemented as a ‘robust scaler’ part of scikit-

learn.  

Feature selection is a crucial step to address the curse of 

dimensionality. Firstly, the correlation between features was 

computed and for pairs with a correlation higher than 0.9 one 

of the features was removed. In this study, we evaluate 

different feature selection techniques: an unsupervised 

method - principal component analysis (PCA), a wrapper 

method - recursive feature elimination (RFE), and a 

multivariate filter method - minimum redundancy maximum 

relevance algorithm (mRMR) [14]. With PCA, the optimal 

number of features to be selected was defined as those needed 

to explain 95% of the variability in the data. The selection 

criterion for RFE and mRMR was accuracy, as assessed with 

a support vector classifier (SVC) with a linear kernel.  

The models under study were a logistic regression (LG), a 

K-Nearest Neighbors (KNN), and a support vector machine 

(SVM). These algorithms were chosen as they are widely 

used, simple to implement, and computationally efficient. The 

KNN and SVM classifiers are sensitive to the choice of 

hyperparameters, for which optimization was performed in 

the training set. The parameters under study were the number 

of neighbors, the leaf size, and the p (Manhattan distance or 

Euclidean distance) for the KNN; and kernel type, C, and 

gamma (interconnected regularization parameters) values for 

the SVM. For the KNN the leaf size was varied between 1 and 

50, the number of neighbors between 1 and 30, and p was 

either 1 or 2. For the SVM, the kernel type was linear, RBF, 

or poly, the studied C values were 0.1, 1.5, 10 and the gamma 

values were 1, 0.1, 0.01, 0.001, 0.0001. 

 

I.   Statistical analysis 

Independent cross-validation (CV) was implemented in a 
nested fashion. The external cross-validation loop consisted 
of a stratified shuffle with 10 splits, enforcing a data split of 
80% for training and 20% for testing. The external cross-
validation process was repeated 10 times. Nested 10-fold 
cross-validation schemes on the training data were 
implemented for RFE and mRMR feature selection while 
performing a random grid search to optimize the classifier's 
hyperparameters. The number of features chosen by each 
feature selection method in every iteration of the cross-
validation scheme was recorded. With this information, it was 
possible to retrieve the prevalence of each choice. To assess 
which features were the most relevant in distinguishing benign 
from malignant samples, the RFE and mRMR were applied to 
the full dataset.  

Model performance was assessed by the area under the 
curve (AUC).  AUC values were obtained on the test dataset 
after feature selection, using the best model hyperparameters 
(which were recorded for each iteration of the CV),  and were 

used to assess the performance of the different combinations 
between classifiers and feature selection methods. 

III. RESULTS 

Imaging data from 80 patients, encompassing 410 benign 
and 195 malignant ROIs, were included in the study. For each 
patient, a total of 137 imaging features were available for 
further analysis. The training set consisted of 328 positive and 
156 negative ROIs.  

A.  Feature selection 

From the initial 137, a total of 46 features remained after 
removing those with a correlation higher than 0.9. Fig.1 
illustrates the prevalence of the optimal number of features for 
the different feature selection methods as compiled through all 
CV and repetitions. With PCA feature selection, the most 
commonly selected number of features was 9 (41%) and 10 
(34%). As for RFE, the number of features oscillated from 6-
46; the highest prevalence was for 14 (9%). At last, using 
mRMR, the number of features oscillated between 6-46, with 
the highest prevalence for 22 and 26 (both with 6%), and 21 
and 24 (7%) features.  

Figure 1. Prevalence of the optimal number of features as decided by the 
PCA, RFE, and mRMR feature selection methods. 

The most commonly selected top 5 features for the RFE 
and mRMR methods are presented in Table II. PCA is not 
covered in this table as due to the algorithm’s nature, the 
features lose their original meaning.  

TABLE II.  FEATURES RANKED FOR THEIR RELEVANCE. 

Top 

ranking 

features 

Feature selection methods 

RFE 

Training CV (prevalence) 
mRMR 

Training CV (prevalence) 

1 MRDI median kd (100%) MRDI median kd (100%) 

2 TM median ve (47%) MRDI median A (84%) 

3 DCE_wi, GLCM, Sum 

average (45%) 

TM median kep (33%) 

4 TM median kep (88%) MRDI median t0 (23%) 

5 DCE_wi, GLSZM, HGZE 

(17%) 

TM median Ktrans
 (22%) 

B.  Classifiers 

The optimal SVM hyperparameters were an RBF kernel 
(93%), C = 10 (89%) and gamma = 0.01 (86%). Regarding 
KNN, the most prevalently chosen hyperparameters were 5 
(85%) neighbors, a leaf size of 14 (85%) and a p = 2 (95%). 

C.  Overall performance results 

The median (range) AUC values as obtained on the test 

dataset for each feature selection method and classifier over 

all cross-validations and repetitions are reported in Table III. 
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Two combinations of feature selection methods and 

classifiers obtained the best performance with a median AUC 

= 0.86. These are highlighted in bold in Table III. Fig. 2 

illustrates a malignancy probability map obtained using RFE 

feature selection and a KNN model trained on a subset of the 

original dataset (without this specific patient) and tested on 

this example case. 

TABLE III.  MEDIAN AUC VALUES OBTAINED FOR THE DIFFERENT 

COMBINATIONS OF FEATURE SELECTION AND CLASSIFIERS. 

Feature selection Classifier AUC median (range) 

PCA feature selection 

 

 

KNN 0.85 (0.79 – 0.92) 

SVM 0.80 (0.69 - 0.92) 

LG 0.80 (0.69 – 0.87) 

RFE feature selection  

 

 

KNN 0.86 (0.79 – 0.93) 

SVM 0.82 (0.69 – 0.91) 

LG 0.81 (0.71 - 0.90) 

mRMR feature selection 

 
KNN 0.86 (0.79 – 0.93) 

SVM 0.81 (0.69 – 0.91) 

LG 0.81 (0.70 – 0.89) 

 

 

Figure 2. A. Prostate specimen with histopathological tumor delineation 
(in red), B. kd dispersion map, and C. malignancy probability map for an 
example patient. 

IV. DISCUSSION 

The obtained results highlight the value of quantitative 
DCE-MRI-derived parameters in PCa detection. With a 
median AUC ranging from 0.80 to 0.86, the proposed 
radiomic approach proved to have an excellent diagnostic 
potential [15]. This work combines both spatial as well as 
temporal information by incorporating the texture analysis of 
3 timeframes from the DCE-MRI sequence, as well as the 
pixel-based pharmacokinetic analysis of the full 
concentration-time curves. The MRDI median kd dispersion 
feature was consistently chosen as the most relevant in 
distinguishing benign and malignant ROIs. Additionally, 
median ve, kep, and Ktrans as obtained through the TM, MRDI 
median A and t0, and spatial characteristics extracted from the 
first DCE time point (wash-in) regularly appeared as the 
highest-ranking features. The variability observed in the 
reported AUC results highlights the fact that the available 
dataset is small in comparison to the number of extracted 
features. This is a common limitation in studies that rely on 
(labeled) medical data, and ours is not an exception. This 
AUC variability is the largest for SVM, potentially due to its 
higher complexity. Our feature selection methods suggest the 
use of a 6-30 subset of features leads to optimal performance, 
which fulfills a typical rule of thumb recommending a 
minimum of 10 outcome events per predictor variable [16]. 
The extension of this work encompasses evaluating the 
diagnostic potential of DCE-derived features in comparison 
and combination with T2w and ADC imaging features and 
improving the machine learning framework. 

In the radiological PI-RADS v2 guidelines used in clinical 
practice for PCa diagnosis, DCE-MRI is exclusively 

evaluated in a qualitative manner. In this way, the rich spatial 
and temporal DCE dataset is reduced to a few characteristics 
of the TIC; as such, the wealth of information present in the 
DCE loops is not fully exploited. In this work, we offer 
evidence that DCE parameters, namely those derived from 
MRDI as well as spatial features from specific DCE-MRI 
timepoints, have potential for PCa diagnosis and should be the 
target of further investigation.  

V. CONCLUSIONS 

Quantitative DCE-MRI-derived imaging features have 
diagnostic potential in PCa. This work suggests that the value 
of DCE-MRI, namely with the use of quantitative parameters 
derived from pharmacokinetic analysis, should be revisited in 
future prostate cancer diagnostic radiology guidelines. 
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