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Abstract— Hand gesture decoding is a key component of
controlling prosthesis in the area of Brain Computer Interface
(BCI). This study is concerned with classification of hand
gestures, based on Electrocorticography (ECoG) recordings.
Recent studies have utilized the temporal information in ECoG
signals for robust hand gesture decoding. In our preliminary
analysis on ECoG recordings of hand gestures, we observed
different power variations in six frequency bands ranging from
4 to 200 Hz. Therefore, the current trend of including temporal
information in the classifier was extended to provide equal
importance to power variations in each of these frequency
bands. Statistical and Principal Component Analysis (PCA)
based feature reduction was implemented for each frequency
band separately, and classification was performed with a Long
Short-Term Memory (LSTM) based neural network to utilize
both temporal and spatial information of each frequency band.
The proposed architecture along with each feature reduction
method was tested on ECoG recordings of five finger flexions
performed by seven subjects from the publicly available ‘fin-
gerflex’ dataset. An average classification accuracy of 82.4%
was achieved with the statistical based channel selection method
which is an improvement compared to state-of-the-art methods.

I. INTRODUCTION

A Brain-Computer Interface (BCI) is a communication
bridge between the brain and external devices, and translates
electrical activity in the brain to commands. BCIs have
many applications in assistive technology to e.g. paralysed
and amputees. Several signals can be used as an input
to BCI systems, including Electroencephalography (EEG),
Magenetoencephalography (MEG), and Electrocorticography
(ECoG). Although EEG is a non-invasive method and en-
ables easy data acquisition, the signals are generally band-
width limited [1], because of the low-pass filtering caused
by the skull. In contrast, ECoG is an invasive method, with
the advantage of higher SNR and broader bandwidth of the
signals.

When considering frequencies from 0.5 to 200 Hz, previ-
ous studies have found that high gamma frequencies (above
65 Hz) are the most descriptive, to distinguish individual
hand gestures [2]-[5]. However, the classification accuracy is
also influenced by other factors, including complexity of the
experiment, electrode location and density, and processing
methods and parameters [10]. In previous studies, classifiers
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such as Naive Bayes (NB) [4], template matching [5],
Support Vector Machines (SVM) [3], [6], Linear Program
Machines (LPM) [2], Linear Discriminant Analysis (LDA)
[1], [7]-[9], Time Variant Linear Discriminant Analysis
(TVLDA) [10] and Recurrent Neural Networks (RNN) [11]
have been used for gesture classification. Among these, the
studies using NB, LDA, SVM and LPM have not utilized the
temporal information. Since a gesture comprises a series of
motor actions, temporal information in ECoG signals contain
vital information for a gesture classifier. Thus, recent studies
have used classifiers such as template matching, RNN and
TVLDA to incorporate temporal information. Although the
classifiers in recent studies utilized the temporal information,
they did not consider variations in different frequency bands
separately. Variations in different frequency bands are impor-
tant because each band has its own activation pattern during
a gesture, such as Event Related Synchronization (ERS) and
Event Related Desynchronization (ERD) [6].

Excessive features generally lead to overfitting of machine
learning models, increased computational complexity and
inclusion of irrelevant information. In the context of hand
gesture classification, feature reduction methods such as
feature selection, [5]-[9], [11], Common Spatial Patterns
(CSP) [7], [12], and Principal Component Analysis (PCA)
[10] have previously been studied.

In previous researches [1], [10], channels that exhibit
significant power variations (ERD/ERS) in higher number
of frequency bands were considered during feature reduction,
while the channels that exhibit significant power variations
in lower number of frequency bands were rejected. However,
the rejected channels might exhibit significant power varia-
tions in certain frequency bands than the selected channels.
Therefore, this approach might not always utilize power
variations occurred in some frequency bands.

In the current study, we considered six frequency bands:
4-8 Hz, 8-12 Hz, 12-40 Hz, 40-70 Hz, 70-135 Hz and
135-200 Hz. In order to give equal importance to power
variations in each frequency band separately, PCA and
statistical based channel selection methods were performed
for each frequency band individually. In addition, to capture
the temporal power variations from each frequency band
separately, a RNN based architecture with two sequential
Long Short-Term Memory (LSTM) blocks was implemented.
In the first block, features from each frequency band were
given as input to separate LSTM layers. The LSTM layer in
the second block combined the outputs from the first block.



II. METHODOLOGY

The proposed method comprises A) Power Spectral Den-
sity (PSD) based feature extraction, B) statistical and PCA
based feature reduction, and C) LSTM based architecture
for gesture classification. The publicly available ‘fingerflex’
dataset was used to validate the method.

A. Feature Extraction

The feature extraction was based on the PSD of the signal,
as described in the following and shown in Fig. 1. Let 2,
be an ECoG signal recorded with channel [ of L channels,
while the subject was performing a gesture in trial m of M
trials. ; ,, contains ECoG samples recorded within the time
interval of —2 s to +2 s, with time = 0 corresponding to the
onset of the gesture. x; ,, was segmented into T’ overlapping
segments, with a length of 250 ms and an overlap of 50 ms.
Let xl(?n(n), n=0;...;N —1, be N samples of segment
t extracted from channel / and trial m. The PSD, Sl(i)n(k:),
was estimated for each segment as given in Eq. 1.

Sion(k) =~

where h(n) is a hamming window and % is a frequency bin.

In the method proposed by Li et al., 2017 [6], five
frequency bands were used for the analysis. Here we used
the same frequency bands, with the addition of breaking
the lower frequency band into Theta and Alpha. Thus, the
frequency bands were: Theta (4-8 Hz), Alpha (8-12 Hz), Beta
(12-40 Hz), low Gamma (40-70 Hz), high Gamma (70-135
Hz), and a high frequency band (135-200 Hz). The Theta
and Alpha bands were considered separately, because we
observed different power variations within these frequency
bands before the onset of a gesture.

For frequency band f, the average PSD value Al(t'r)n 7 was
calculated for each channel and segment as follows:
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where ky ; is the i frequency bin for frequency band f and
N7 is the total number of frequency bins in the f™ frequency
band, where f =1,2,...,6.

The time interval from —2s to —1.5s of each segment
was considered as the relaxation period, as indicated in
Fig. 2. The average of this interval was used to normalize
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Fig. 1. Illustration of the feature extraction process based on PSD values..
The normalized data is then rearranged into a 3-D matrix, where L, T'
and F' represent number of channels, number of segments and number of
frequency bands, respectively.

the average PSD as given in Eq. 3 and shown in Fig. 1.
In order to improve signal stationarity and Gaussianity, the
normalized PSD was log transformed [10].
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where Asgrm,l,m, s is the normalized PSD and Aretaz,im, f

is the average relaxation PSD.
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Finally, the normalized PSD values for a gesture trial
were arranged into feature matrices, one for each frequency
band. The rows of a features matrix represented the channels,
and the columns represented the segments, corresponding to
different time windows, as described above. Thus, six feature
matrices were extracted for each trial, as shown in Fig. 2.
Before feeding the feature matrices to the classifier, they
were truncated to the time interval of —0.5 s to +2 s from
onset.

B. Feature Reduction

In the current study, the features were calculated for each
channel separately, and thus reducing the dimension of the
channel space resulted in a proportional reduction of the
feature space. Two different methods were used for feature
reduction, as described below.

1) Statistical Based Channel Selection: This method
removes irrelevant channels and retains informative channels
with features that show significant difference between the
gestures. Statistical channel selection was carried out for
each frequency band separately. In order to preserve the
temporal information, three time intervals were considered :
before onset (—0.5 s to 0 s), during (0 s to 4+0.5 s)
and after onset (4+0.5 s to +1.5 s). These time intervals
were considered because significant power variations were
observed in those intervals during visual inspection of the
data. For each gesture trial and time interval, the average
PSD value was calculated. Then, the average PSD values for
a gesture was collected in three separate sample populations,
corresponding to the three time intervals. Channels with
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Fig. 2. Illustration of the extracted PSD based feature maps for each

frequency band after normalization for subject bp in the fingerflex dataset.
Figures (a), (b), (c), (d), (e), and (f) represent feature maps for 4-8 Hz,
8-12 Hz, 12-40 Hz, 40-70 Hz, 70-135 Hz and 135-200 Hz frequency
bands, respectively. R represents the relaxation period (—2 to —1.5 s) before
performing the gesture.
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power variations relevant for gesture classification were
determined by comparing the sample populations for all
possible pairs of gestures in each time interval separately.
Channels were included in the feature space if the p-value
for at least three pairs were below 0.01 in a two-tailed paired
t-test.

2) Principal Component Analysis: A disadvantage of the
channel selection method described above is that it entirely
discards the information within unselected channels and it
is incapable of combining the joint information from the
selected channels, which leads to redundancy. PCA can
be used to perform dimensionality reduction and overcome
these shortcomings. PCA based dimensionality reduction was
carried out for each frequency band separately. The feature
matrices for all trials were combined to a single matrix for
each frequency band, resulting in matrices with the following
dimensions (Nsegments * Nirials) X Nehanneis. Dimension-
ality reduction was performed in the channel dimension,
and therefore the temporal information of the data was not
affected.

C. Gesture Classification

The aim was to develop a classification model which uti-
lizes the spectral information while preserving the temporal
variations. To achieve this, we used a LSTM model, which is
a type of RNN designed to model the temporal relationships
within sequential data. LSTMs are specialized in learning
long-term dependencies of a sequence, since it includes
memory cells which can preserve information for a long time
interval. This decides which information from preceding time
windows contributes to the classification output.

As shown in Fig. 3, the proposed architecture contains
two sequential LSTM blocks. The first block consists of a
separate LSTM layer for each frequency band. The outputs
from these LSTM layers are then concatenated and fed
into a another LSTM layer. The proposed architecture was
implemented using Keras with a TensorFlow backend. The
feature matrices after feature reduction were fed into the
6-layer LSTM networks with 128 units, tanh activation
function and dropout of 0.1. Outputs from the 6-layer LSTM
networks remained as temporal sequences. The outputs were
concatenated together and fed into a single LSTM layer with
32 units, LeakyReLU (alpha = 0.015) activation function
and 0.1 dropout. A Dropout layer with a probability of 0.3
and a classification layer with softmax activation function
was incorporated after the LSTM layers. The number of
units for each LSTM layer was selected based on results
from experiments conducted on the data using different
combinations. RMSprop optimizer was used to update the
weights during model training with a learning rate of 0.001.
Categorical cross entropy function was used to calculate the
loss of the model, and the performance metric was accuracy,
expressed as number of correctly classified trials. Stratified
10-fold cross validation was used to evaluate the performance
of the model, and also to tune the hyper-parameters and
model architecture.
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Fig. 3. Illustration of proposed architecture. N1, N2, N3, N4, N5 and

N6 represent number of selected channels in each frequency band after
feature reduction.

D. Dataset

The proposed method was evaluated with the publicly
available ‘fingerflex’ dataset from Kai Miller (Miller K.J.,
2012 [13]). The study was approved by the Institutional Re-
view Board at the University of Washington and all patients
participated voluntarily*. As shown in Table I, the dataset
contains ECoG data acquired from nine subjects. However,
we did not consider data from the subjects mv and wm for
evaluation, because the recordings from mv were corrupted
while wm data did not have a sufficient number of trials per
gesture. The data was acquired using a Synamps 2 biosignal
amplifier (Compumedics Neuroscan, North Carolina, USA).
The data was sampled at 1 kHz and was bandpass filtered
from 0.3 to 200 Hz [10]. Visual cues indicating which finger
to flex out of the five fingers, were provided on a bedside
monitor. The trials were 2 s long and 2 to 5 flexions were
carried out during each trial. Each trial was succeeded by a
resting period of 2 s. Altogether 150 trials were conducted
for each patient, 30 trials corresponding to each finger. To
supplement the ECoG data, a glove sensor (Fifth Dimension
Technologies, Irvine, CA) with 5 degrees of freedom was
used to record the finger positions.

TABLE I
DESCRIPTION OF THE DATASET.
Patient A Gend Handed-  Hemi- No.of
Code £¢ ender ness sphere™ electrodes
bp 18 F Right Left 46
cc 21 M Right Right 63
zt 27 F Right Left 61
jp 35 F Right Left 58
ht 26 M Right Left 64
my 45 F Right Left 43
we 32 M Right Left 64
wim 19 F Right Right 38
jc 18 F Right Left 47

“Ethics Statement : All patients participated in a purely voluntary man-
ner, after providing informed written consent, under experimental protocols
approved by the Institutional Review Board of the University of Washington
(No. 12193). All patient data was anonymized according to IRB protocol,
in accordance with HIPAA mandate. These data originally appeared in the
manuscript “Human Motor Cortical Activity Is Selectively Phase- Entrained
on Underlying Rhythms” published in PLoS Computational Biology in 2012
(Miller K.J., 2012 [13]).

“*Hemisphere indicates the brain region covered by the electrodes
(left/right).
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Fig. 4. Data preprocessing pipeline

E. Data Preprocessing

The preprocessing pipeline we used is summarized in
Fig. 4. This predominantly follows the procedure described
by Grunewald et al., 2019 [10]. First, the ECoG data was
re-referenced to the average of all channels. Then, to reduce
the first three harmonics of power-line interference in the
data, sixth order cascaded Butterworth notch filters were
applied at frequencies 60 Hz, 120 Hz and 180 Hz. Then,
the data was whitened by applying the spectral whitening
filter proposed by Grunewald et al., 2019 [10] to equalize the
spectral contributions. Finally, the data was bandpass filtered
(Chebyshev type II, 3™ order) between 0.5 Hz and 200 Hz.

For onset detection, derivatives of the glove signals were
acquired and their peaks were detected. The detected peaks
were compared with the expected pattern for the instructed
gesture (paradigm signal) and the first peak corresponding
to the gesture was considered as the onset. Wrong execution
of gesture was detected by comparing the paradigm signal
with the peaks detected from derivatives of glove signals and
such trials were removed from the data.

III. RESULTS AND DISCUSSION

The performance of the proposed gesture classification
method was evaluated for each feature reduction technique
by performing stratified 10-fold cross validation. The ob-
tained accuracies were compared with the TVLDA based
classification method proposed by Gruenwald et al. [10].
The average accuracy for the proposed architecture with
statistical channel selection was higher for all the subjects
except wc, as shown in Table II. However, the standard
deviation values were higher with our proposed architecture.
This might be because Gruenwald et al., [10] evaluated
using 20 repetitions of 10-fold cross validation, whereas we
evaluated using a single 10-fold cross validation. Overall,
Gruenwald et al., achieved an average classification accuracy
of 79.6% across the seven subjects as opposed to 82.4%
with statistical channel selection and 77.0% with PCA based
feature reduction.

Using the first 3 subjects in the ‘fingerflex’ dataset, Onaran
et al., 2011 [12] achieved an average classification accuracy
of 86.3% with a redundant spatial projection framework
based on common spatial patterns. However, we were able

TABLE 11
CLASSIFICATION ACCURACY (%)

Subject Gruenwald et  Proposed arch. l?tr}i)p ?ste d }?r ch. |
name al, 2019 [10]  with PCA With stat. channe
selection
bp 89.4£13 82.6£10.3 89.8+£ 6.7
cc 82.8+1.2 83.7+ 7.2 854+ 6.7
zt 85.7£1.2 84.9+ 7.2 86.6+ 9.2
jp 77.3+2.0 70.4+11.3 79.2+12.1
ht 64.5+3.2 66.1+ 8.6 69.7+ 6.5
we 80.1£1.7 71.4+11.8 79.7+ 6.0
jc 77.5+1.7 80.2+ 7.5 86.7+ 4.2
Average 79.6 77.0 82.4
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to surpass this accuracy for these three subjects achieving an
average classification accuracy of 87.3% with the statistical
channel selection method. However,the PCA based method
produced a lower accuracy of 83.7%.

IV. CONCLUSION

In order to provide equal importance to power variations
in six frequency bands ranging from 4 to 200 Hz, we have
implemented a RNN model with a separate LSTM layer for
each frequency band along with PCA feature reduction and
statistical based channel selection. The method was tested
on publicly available ECoG data, and an average accuracy
of 82.4% was obtained with the statistical based channel
selection and 77.0% with PCA. The results are on par with
the state-of-the-art methods, and justify that the method is
suitable for gesture classification of ECoG data. Looking
forward, the proposed method could be further improved
to allow real-time hand gesture recognition. More optimal
ECoG electrode placements might improve the classification,
and in that context it would be relevant to test the proposed
method on EEG data, as the non-invasive nature of EEG
allows more flexibility in the electrode placements.
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