
Mapping Vagus Nerve Stimulation Parameters to Cardiac Physiology
using Long Short-term Memory Network

Andrew Branen1, Yuyu Yao2, Mayuresh V. Kothare2, Babak Mahmoudi3, and Gautam Kumar4

Abstract— Vagus nerve stimulation (VNS) is an emerging ther-
apeutic strategy for pathological conditions in a variety of
diseases; however, several challenges arise for applying this
stimulation paradigm in automated closed-loop control. In
this work, we propose a data driven approach for predicting
the impact of VNS on physiological variables. We apply this
approach on a synthetic dataset created with a physiological
model of a rat heart. Through training several neural network
models, we found that a long short term memory (LSTM)
architecture gave the best performance on a test set. Further,
we found the neural network model was capable of mapping a
set of VNS parameters to the correct response in the heart rate
and the mean arterial blood pressure. In closed-loop control of
biological systems, a model of the physiological system is often
required and we demonstrate using a data driven approach to
meet this requirement in the cardiac system.

I. INTRODUCTION

Vagus nerve stimulation (VNS) is an emerging therapeutic
technique that seeks to offset various disease pathologies by
restoring stability through a surgically implanted electrode
[1]. This technique has been applied to depression and
epilepsy, and is under investigation for use in the gastroin-
testinal tract and cardiac systems. Electric pulses sent to
the vagus nerve from the electrode are defined by several
parameters such as pulse width, frequency of pulses, and
pulse amplitude. A major challenge associated with apply-
ing VNS therapies consists of selecting optimal stimulation
parameters to achieve the desired physiological behavior.
Currently, VNS is manually titrated for each individual,
which has led to different results in clincial studies [2], [3],
and [4]. Moving from an ad hoc approach to an automated
closed-loop control scheme could result in higher treatment
efficacy with VNS.

Shifting to automated closed-loop control has numerous
obstacles in the cardiac system as predicting phyisiological
behavior with the influence of VNS requires a complex
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model. Previously, this model requirement has been ad-
dressed with a state transition model [5], or a Laplacian based
model [6]. A drawback associated with these approaches
stems from requiring very specific model parameter selection
and considering the selection of a single stimulation parame-
ter. These requirements move further away from autonomous
closed-loop control of the cardiac system. Conversely, using
fully detailed mechanistic models suffer the drawback of
computational expense which limits their applicability in
real time closed-loop implementation. Further, these fully
detailed mechanistic models may not be available to in-
corporate the nuances of an experimental setup in the real
system. For example, if a model considers an electrode at
a specific location and the true experimental setup implants
an electrode at a different location, the model may not be
extendable to that specific alteration.

Data driven models, such as neural networks, provide a
promising solution to address challenges discussed above
and have been used in a similar context for a Hodgkin
Huxeley pyramidal neuron model [7]. Such applications
highlight a major advantage of neural networks as they do not
require underlying assumptions about the system dynamics
or require a specific distribution of data. Recurrent neural
networks (RNNs) have been specifically developed for time-
series data. Finally, neural networks can be computationally
inexpensive to evaluate when compared to full scale models.
Taken together, these features suggest a promising applica-
tion of neural networks to model the cardiac system.

In this work, we propose an approach for modeling the
response of physiological variables to VNS stimulation in
the cardiac system by using an existing cardiac model [8]
to generate synthetic data in an open loop format. We
then train a variety of RNN architectures on the collected
open loop data. Our results show that a long short-term
memory (LSTM) architecture provided the best predictive
performance. Further, we find that the computational cost
of LSTM in predicting the mean arterial blood pressure and
heart rate for 100 consecutive cardiac cycles is approximately
10 folds lower than the original physiological model.

II. MODELING APPROACH

The model used for synthetic dataset creation is a cardiac
model of a rat heart [8]. Briefly described, it consists of
a system of delayed differential equations with ten internal
states and a nonlinear combination of the internal states give
rise to the phyisological variables of interest: the mean arte-
rial blood pressure and the heart rate. VNS was incorporated
by including three different locations, where each location
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had two parameters, a pulse width and a pulse frequency
which together characterize the stimulation paradigm. Each
VNS location corresponded to the full recruitment of either
baroreceptive, sympathetic, or vagal fibers.

Using the cardiac model from [8], open-loop simulations
were run for 15,198 different trials with the VNS parameters
chosen through sampling a uniform distribution. The bounds
for the pulse width and pulse frequency were 0-0.5 ms, and
0-50 Hz, respectively. The three different locations were
randomly activated using a uniform distribution between
0 and 1 where values above 0.5 indicated activating that
location. A single open-loop trial was obtained after selecting
the VNS parameters and simulating the model for 100
consecutive cardiac cycles. During all 100 cardiac cycles,
the physiological outputs of the heart rate and mean arterial
blood pressure were recorded from the model.

Next, the trials were divided into a training, validation, and
test set following a 40%, 20%, and 40% split, respectively.
For the training and validation sets, the 100 cardiac cycles
were sliced into 50 pairs of alternating points with the
inputs consisting of the VNS parameters, heart rate and
mean arterial pressure. The labels consisted of the heart rate
and mean arterial pressure for the next cardiac cycle. With
this problem formulation, all neural networks were trained
to make a single step prediction, where the cardiac cycle
serves as the discretionalized step. To assess neural network
performance using the test set, the 100 cardiac cycles were
sliced into one input (the initial heart rate and mean arterial
pressure values with VNS parameters) and 99 labels for the
remainder of the trial. The neural network was evaluated on
its ability to recursively predict the 99 cardiac cycles, given
the initial point. Testing the network in this way allowed us to
assess the ability of the neural network to predict recursively,
similar to its application in a control context. Before the data
was fed to the network for training, all data was normalized
according to equation 1.

x̂ =
x−µ

xmax − xmin
(1)

Here, x̂ denotes the normalized data point, µ denotes the
mean of the training set, xmax and xmin denote the maxi-
mum and minimum values of the training set, respectively.
Statistics of the training set were used, so the model did not
get any information about the validation or testing datasets.
The distributions following normalization for the variables
are shown by Fig. 1. All of the VNS parameters have the
same distribution shape, which is expected as they were all
drawn from the same uniform distributions.

A variety of neural network architectures were trained,
including a vanilla RNN, a gated recurrent unit (GRU), and
a LSTM. The number of layers and inputs were also varied to
explore the network architecture on the model predictions.
For all models, the hyperbolic tangent function was used,
and the output from the recurrent layer was fed to a dense
layer with two dimensions to predict the two physiological
variables. Throughout the training of neural networks, the
mean squared error loss function and ADAM optimizer were
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Fig. 1. A violin plot of the normalized data (unitless) for all variables. HR
and MAP denote the heart rate and the mean arterial pressure, respectively.
VNS PW indicates the stimulation pulse width at the location number
indicated in the label, and F indicates the stimulation frequency at the
location number indicated in the label. For example, VNS.PW1 denotes
the pulse width parameter at location 1.

used. To assess a trained network’s performance, normalized
mean absolute error (MAE) was used in the test set. One
network was said to be better than another when the mean
absolute error on the test set was lower. As a measurement of
performance, all trained models were compared to a baseline
case that predicts no change in the initial heart rate and
mean arterial blood pressure for the length of the trial, thus
emphasizing a network’s ability to capture the dynamical
behavior.

III. RESULTS

A. Model Comparison

The first goal in searching for an architecture involved a
wide search of different RNN structures. The performance
of different architectures is shown in Fig. 2A. Consistently,
a vanilla RNN fails to capture the dynamical behavior
shown by the higher error value. LSTMs and GRUs contain
several memory gating structures that enable them to capture
long term temporal dependencies. Given the nature of the
differential equation system, we would expect the additional
memory gates to perform better on the dataset as shown by
the lower error values.

Layers were also varied in all architectures to investigate
the influence of this design parameter. Consistently, for all
networks, increasing the number of layers did not improve
the quality of predictions (see Fig. 2B). To the contrary,
neural networks with more layers performed worse on the
test dataset. The reason for this observation may lie in the
problem formulation of a single step prediction. Number of
input neurons were also varied for all networks (see Fig. 2C).
Since the network was predicting two ouputs, the number
of inputs were initially varied in powers of two, holding the
number of layers constant (one). From this study, we observe
that the number of neurons for a single layer must be greater
than eight. When the number of neurons were increased past
32, predictive performance started to decrease.

We found our optimal trained neural network to be a
single layer LSTM with a ten neuron input size. The best
trained GRU, also with a ten neuron input size, provided
similar performance. The best performing network results
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Fig. 2. Comparison of a neural network’s mean absolute error (MAE) on
the test set including the baseline case (A). The effect of layer size on a
neural network’s predictive performance on the test set (B). The effect of
input neuron size on a neural network’s predictive performance on the test
set (C).

are highlighted in Table I. When selecting our best network,
we favored networks that were smaller with comparable
performance.

TABLE I
TOP THREE TRAINED ARCHITECTURES

Model Type Input Size Layers Test Set Mean Absolute Error

LSTM 10 1 0.0072
GRU 10 1 0.0077
GRU 32 1 0.0078

B. Best Model Prediction Performance

Using the LSTM with ten input neuron size, a sample
prediction from the test set is shown in Fig. 3 along with
the average error for all cardiac cycles. Note that the model
output is fed back to make the next prediction, however there
is not an accumulation of error. While the first few timestep
predictions are slightly inaccurate, the steady state value
is still accurately predicted. Thus the LSTM is capable of
performing predictions in a recursive fashion. From the error
plot, we observe the mean arterial pressure had a higher error
(see Fig. 3C). Examining plots of mean arterial pressure, the
cause of this discrepency lies in curves that are less smooth
than the heart rate, as confirmed by the error curve for heart
rate which has a more consistent error.

Since the model was able to reasonably predict individual
trials, we varied the VNS parameters over time to obtain a

complex nonlinear curve to assess the model’s performance
in a more challenging scenario. These results are shown in
Fig. 4. For the first ten cycles, VNS at location 1 was active
with the pulse width set to 0.21 ms and the frequency set
to 21 Hz. The following ten cycles switched to activating
VNS at location 3 with pulse width set to 0.09 ms and the
frequency set to 9 Hz. Then VNS at location 2 was activated
with a pulse width of 0.31 ms and a frequency of 30 Hz
for ten cycles. All VNS locations were turned off for 19
cycles, after which location 1 was activated with a pulse
width of 0.14 ms and a frequency of 14 Hz for another
ten cycles. VNS at all locations was turned off for the final
40 cycles. Again, the model demonstrates a reasonable level
of accuracy when tracking the change in the physiological
variables. These results support the notion that the trained
network has captured the underlying dynamics of the full
differential equation model and is capable of sucessfully
mapping VNS parameters to the physiological output. In
the context of closed loop control, the LSTM demonstrates
success and accuracy in the task of predicting where the
system will go following a selection of the VNS parameters.

Fig. 3. Example of the trained LSTM model performance on a trial from
the test set for predicting the heart rate (A) and the mean arterial pressure
(B) for one selection of the VNS parameters. The LSTM is given the input
(blue), and is asked to recursively predict the next 99 labels (black) with the
LSTM predictions shown in red. Normalized mean absolute error (MAE)
over the entire test set for the heart rate and the mean arterial pressure is
shown, along with the standard deviation shaded around the curve (C).

C. Computational Speed

Having now showed that the neural network model is capable
of predicting complex curves generated by the differential
equation model, we assessed the computational speed of the
LSTM model and the full physiological model. Additionally,
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Fig. 4. Comparison between the LSTM model and the full model
for the heart rate (A) and the mean arterial blood pressure (MAP) (B)
for 99 simulated cardiac cycles. The black line shows the output of the
full differential equation model (labeled Truth), while the red line shows
the predictions from the LSTM model (labeled Prediction). Cycles 1-10:
location 1 with pulse width 0.21 ms and pulse frequency 21 Hz (light blue).
Cycles 11-20: location 3 with pulse width 0.09 ms and pulse frequency 9
Hz (light red). Cycles 21-30: location 2 with pulse width 0.31 ms and pulse
frequency 30 Hz (light green). Cycles 50-60: location 1 with pulse width
0.14 ms and pulse frequency 14 Hz (dark blue). All other cycles had no
locations active.

TABLE II
COMPARISON OF COMPUTATIONAL SPEED. TESTS WERE DONE USING

AN INTEL(R) CORE I7-9700 CPU 3.00 GHZ WITH 16.0 GB OF RAM.

Model Type Cardiac Cycles Time (sec)

Full Model 100 19.99
LSTM 10 100 2.10
GRU 10 100 2.14
RNN 10 100 2.09

we included a vanilla RNN and a GRU of similar sizes for a
wider comparison. These results are summarized in Table II.
Comparatively, there is a clear decrease in the computational
time when using a LSTM or any other RNN. While we would
expect these results, such a marked decrease in computational
time supports the applicability of a LSTM-based model in
designing a model-based optimal closed-loop control strategy
for controlling cardiac systems.

IV. CONCLUSIONS

Our goal in this work was to develop a data driven approach
capable of reproducing nonlinear dynamics for modeling the
heart rate and the mean arterial blood pressure in response
to the VNS, and demonstrate this approach on a synthetic
dataset. We found that both a GRU and LSTM were capable
of accomplishing such a task, with a LSTM exhibiting
slightly better performance on the dataset used. Further, we
showed that both the GRU and LSTM took significantly less
computational time than the full physiological model. Thus,

the trained LSTM can serve as a reduced-order model of the
full physiological rat model.

Due to a limitation of the physiological model, pulse
amplitude was omitted as an optimized VNS parameter,
which leads to an extended application of this approach
where experimental data that includes all three stimulation
parameters is used for training. Such an investigation would
provide a monumental step in the direction of applying this
approach in the therapeutic context. Of particular interest
in this application would be the neural network’s ability
to account for animal specific variation. If successful, this
feature would be desirable in closed-loop control for VNS
therapy and could provide another advantage of using a
neural network over a mechanistic model as most models do
not capture experimental variation. We anticipate that this
application would likely require a different neural network
architecture (number of layers, input size, etc.), but suspect
that a LSTM and GRU would still be perferable to the vanilla
RNN.

Another extension to the LSTM model involves imple-
menting a controller to work with the LSTM in a model
predictive control framework to find the optimal stimulation
parameters to reach a target set-point. This study could
elucidate the differences in controller performance with the
increased computational speed of a neural network. Both
extensions mentioned here seek to demonstrate an increased
relevance to the overall goal and address challenges related
to autonomous closed-loop control of VNS.
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