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Abstract— Critical Congenital Heart Disease (CCHD) screen-
ing that only uses oxygen saturation (SpO2), measured by pulse
oximetry, fails to detect an estimated 900 US newborns annually.
The addition of other pulse oximetry features such as perfusion
index (PIx), heart rate, pulse delay and photoplethysmography
characteristics may improve detection of CCHD, especially
those with systemic blood flow obstruction such as Coarctation
of the Aorta (CoA). To comprehensively study the most relevant
features associated with CCHD, we investigated interpretable
machine learning (ML) algorithms by using Recursive Feature
Elimination (RFE) to identify an optimal subset of features.
We then incorporated the trained ML models into the cur-
rent SpO2-alone screening algorithm. Our proposed enhanced
CCHD screening system, which adds the ML model, improved
sensitivity by approximately 10 percentage points compared to
the current standard SpO2-alone method with minimal to no
impact on specificity.

Clinical relevance— This establishes proof of concept for a
ML algorithm that combines pulse oximetry features to improve
detection of CCHD with little impact on false positive rate.

I. INTRODUCTION

Congenital heart disease (CHD) is the most common birth
defect, affecting nearly 0.8% of all newborn infants [1].
Critical congenital heart disease (CCHD) is a subset of CHD
accounting for almost 20% of these infants [1], representing
the most severe forms of CHD. CCHD lesions require
surgical or catheter-based intervention soon after birth, often
including pre-procedural hospitalization and medical man-
agement. Late or missed detection of CCHD can lead to
significant, preventable morbidity, as well as death [2]–[4].
Prior to mandatory oxygen-saturation (SpO2) based CCHD
screening, 25% of newborns with CCHD were diagnosed
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after going home from the hospital [4], [5]. Although, SpO2
screening has helped with earlier diagnosis and reduced
CCHD mortality, it still misses approximately 900 newborns
with CCHD annually in the United States [6], [7]. The
majority of the missed types of CCHD defects are those
with obstructed systemic blood flow that do not commonly
cause low SpO2, or hypoxemia [6].

To address this problem, we created an automated real-
time data collection system [8] to collect additional pulse
oximetry data in newborns, allowing us to analyze other
pulse oximetry features that may augment the current screen-
ing process when added to the SpO2 screening component.

As such, it is necessary to design an interpretable machine
learning model that can be directly incorporated into our
current SpO2-alone screening system [9] with automatic
feature selection to further improve the sensitivity of CCHD
detection with little impact on specificity (at least 99%).
To our best knowledge, our work is the first to analyze
the feature relevance of CCHD screening by using machine
learning (ML) algorithms as well as the first to incorporate
ML into current standard SpO2 screening.

II. METHODS
A. Subjects

By using an automated collection system [8], we enrolled
335 newborns, including 236 newborns that have a final
diagnosis (with or without CCHD) confirmed. Patients were
excluded if they required vasoactive infusions other than
Prostaglandin E1. The majority of patients were enrolled at
University of California (UC), Davis. Four other hospitals,
Sutter Medical Center in Sacramento, UC Los Angeles, UC
San Francisco, and Cohen Children’s Medical Center in
New York, are also enrolling patients for this study. We
recorded at least 5-minute dual limb (right hand and any
foot) pulse oximetry measurements at three time periods:
within 24 hours, 24-48 hours, and after 48 hours following
the baby’s birth. We analyzed healthy newborns (defined as
those without any CHD) vs those with CCHD (newborns
who require a surgical or catheter-based intervention within
30 days of age). We divided all measurements into two
groups: (G1) 0-48 hours, which included 158 healthy and 27
CCHD newborns; and (G2) over 48 hours, which included
50 healthy and 36 CCHD newborns. The experimental proce-
dures involving human subjects described in this paper were
approved by the Institutional Review Board.

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 1403



B. Spot SpO2-alone Screening

Single pre and post-ductal SpO2 values were recorded
during the measurements as well. These spot values were
used to assign pass or fail to all newborns per the current
standard SpO2-alone screen [9]. If the last recorded spot
SpO2 measurements resulted in a ”repeat” assignment from
this algorithm, we assigned them a ”fail” in a ”Conservative
spot SpO2-alone” algorithm to bias towards the null for
CCHD detection.

C. Features Extraction & Analysis

Pulse oximetry features evaluated for discrimination of
healthy vs CCHD include: heart rate (HR), perfusion am-
plitude index (PAI), also known as perfusion index (PIx),
and oxygen saturation (SpO2). We removed values likely
associated with artifact: HR larger than 250 and SpO2 larger
than 100 (the pulse oximeter assigns a value of 127 for SpO2
when the measurement quality is poor). We then extracted
variance, min, max, median and mean for HR, PAI and
SpO2. To study the differentiation of these features, we
visualized each individually and then their correlation with
each other. Fig. 1 illustrates the distribution of the mean
SpO2 and its correlation with min HR: the mean SpO2 for
the healthy newborns is typically higher than that for the
CCHD newborns and the min HR for healthy newborns is
typically less than that for CCHD newborns.

(a) Mean SpO2 (b) Mean SpO2 and Min HR

Fig. 1. Feature Analysis between Healthy vs CCHD Over 48 Hour of Age.

D. Classification Algorithms

Several ML classifiers were tested for CCHD detection
during this study, including Random Forest, Logistic Regres-
sion, and Multilayer Perceptron. Although a recent study [10]
claimed random forest classifier has the best performance,
we comprehensively investigated the above classification
algorithms by Recursive Feature Elimination (RFE) [11]
with 5-fold cross-validation on each algorithm separately.
RFE can help determine the best performance of each model
and the corresponding optimal feature set. RFE achieves
this by searching for the most relevant subset of features to
optimize our performance metric. We used cross-validation
to optimize sensitivity by setting it as the score of RFE.
To achieve the most optimal sensitivity, we started with all
features from the training dataset as the input and fit the ML
models, which ranked features by importance, discarded the
least important features and refit the model. This process was
repeated until the desired number of features resulted in the
highest sensitivity (as shown in Fig. 2).

(a) Machine Learning Models for 0-48 Hour

(b) Machine Learning Models for over 48 Hour

Fig. 2. Recursive Feature Elimination (RFE) by using Machine Learning
Models for Healthy vs CCHD at Different Ages.

1) 0-48 Hours of age to evaluate for no-CHD vs CCHD:
In this setting, we found that Random Forest Classifier re-
sulted in the highest sensitivity in the 5-fold cross-validation
for the 0-48 hour age. Fig. 2(a) shows the optimal sensitivity
was achieved by using 11 features.

2) Over 48 Hours of age to evaluate for no-CHD vs
CCHD: We found that Logistic Regression performed best
in this group, as Fig. 2(b) demonstrates, we found a subset
of 7 optimal features using Logistic Regression.

The fewer number of CCHD cases compared to healthy
cases resulted in a class imbalance problem, making it chal-
lenging to train a relatively unbiased ML model. To deal with
this issue, we applied Random Oversampling (ROS), Ran-
dom Undersampling (RUS), and Synthetic Minority Over-
sampling Technique (SMOTE) [12], separately. SMOTE is
one type of oversampling method, where the minority class
is oversampled by generating ”composite” examples [12]. We
tried different sampling ratios from 0.2 to 0.9, but the results
had trivial improvements. Thus, we used the balanced loss
function inside of the ML models, which led to the optimal
results we could achieve in this study.

E. Performance Evaluation

CCHD screening is a binary classification problem be-
tween healthy and CCHD, thus we used the following metrics
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to comprehensively evaluate the performance of our model:
Sensitivity (Sens) (1) and Specificity (Spec) (2).

Sens = TPR =
TP

TP + FN
(1)

Spec =
TN

TN + FP
(2)

FPR =
FP

FP + TN
(3)

where:
• TP: the number of CCHD predicted as CCHD
• FP: the number of healthy predicted as CCHD
• TN: the number of healthy predicted as healthy
• FN: the number of CCHD predicted as healthy
We also calculated the Area Under the Receiver Operating

Characteristics curve (AUROC) by plotting true positive rate
(TPR) (1) against false positive rate (FPR) (3) with the
discrimination threshold increasing from 0 to 1.

III. RESULTS

A. Sensitivity and Specificity

TABLE I
COMPARED WITH CURRENT SPO2 SCREENING

Methods Specificity Sensitivity
True Spot SpO2-alone [9] 96.8 62.8

Conservative Spot SpO2-alone [9] 96.8 76.5
ML (0-48 hrs) 97.5 81.5
ML (>48 hrs) 100 83.3

Conservative Spot SpO2-alone + ML (0-48 hrs) 96.2 85.2
Conservative Spot SpO2-alone + ML (>48 hrs) 96 88.9

Conservative Spot SpO2-alone + Any ML 95.8 86.4

The sensitivity and specificity of our proposed method
and the current SpO2 screening methods are summarized
in Table. I. When comparing to the current standard CCHD
screening, which includes spot right hand and any foot SpO2
measurements, the addition of the over 48 hour ML model
did not lead to additional false positive results, but did
detect 4 additional newborns with CCHD, hence increasing
sensitivity from 76.5% to 88.9% (McNemar mid-p = 0.06)
when tested on a sample of 50 healthy newborns and 36
newborns with CCHD. The addition of the 0-48 hour ML
model, resulted in 3 additional false positive results and
detected 3 additional newborns with CCHD, hence increasing
sensitivity from 76.5% to 85.2% (McNemar mid-p = 0.13)
when tested on a sample of 158 healthy newborns and 27
newborns with CCHD. Overall, the ML models improved
the sensitivity from 76.5% to 86.4%, nearly 10 percentage
point improvement.

B. ROC Curve

ROC curve results from 5-fold testing are shown in Fig. 3.
For 0-48 hours, the average AUROC for no-CHD vs CCHD
was 0.92 by using the Random Forest classifier; for over
48 hours, the average AUROC was 0.91 by using the
Logistic Regression model. The estimated AUROC for our

(a) 0-48 Hours

(b) Over 48 Hours

Fig. 3. Area Under the Receiver Operating Curves (AUROC) for Models
on No-CHD vs CCHD.

ML algorithms combining pulse oximetry features (PAI and
HR) appears similar to or better than the current SpO2-alone
screen [13], [14].

C. Interpretable Machine Learning

Compared to the current standard SpO2-alone CCHD
screening, our ML models have the potential to achieve better
sensitivity by incorporating features related to HR and PAI
(or PIx). The optimal subset for the 0-48 hours Random
Forest classifier includes: HR (median, mean, max, variance),
SpO2 (min, max, median, mean), PAI or PIx (mean, median,
max). The optimal subset for the over 48 hours Logistic
Regression ML model includes: HR (min, max, variance),
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Fig. 4. Visualization of One Decision Tree.

SpO2 (median, mean), PAI or PIx (mean, min). Therefore,
from our experiments, we can conclude the features extracted
from HR and PAI have potentials for CCHD detection.

From Logistic Regression, we achieved importance rank-
ing of features based on the trained weights. For the Random
Forest classifier, we visualized decision trees as shown in
(Fig. 4): the decision tree mainly relies on the features
from SpO2, but the features related to HR and PAI are also
considered in deeper decision-making layers of the tree.

IV. DISCUSSION

In this study, we investigated ML algorithms with op-
timized feature selection to provide an enhanced CCHD
screening algorithm. We first applied the current standard
CCHD screening (including both True Spot SpO2-alone and
Conservative Spot SpO2-alone) to our enrolled newborns as
the benchmark. Then, we tested our proposed ML models
on these newborns, which gained approximately 10 percent-
age points increase in sensitivity of CCHD detection. Our
proposed system improved detection of defects currently
missed by SpO2-alone which would serve as a promising
enhanced CCHD screening tool. Furthermore, by using these
interpretable ML models, we found potential benefit of PAI
and HR as features to differentiate between healthy newborns
and newborns with CCHD.

In our future work, we will test the generalizability of
our proposed system on more newborns, and we will study
the potential relations between PAI and specifically systemic
CCHD. To further improve the sensitivity, other potential fea-
tures related to CCHD diagnosis such as radiofemoral pulse
delay and photoplethysmography slopes will be incorporated
and evaluated in the future.
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