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Abstract— Spatial smoothing is a common preprocessing step
in the analysis of functional magnetic resonance imaging (fMRI)
data. However, little is known about the effect of spatial
smoothing kernel size on the temporal properties of functional
brain networks. This study presents a pilot investigation on the
influence of spatial smoothing using independent component
analysis (ICA) as a data-driven technique to extract functional
networks of brain in the form of intrinsic connectivity networks
(ICNs). BOLD resting state fMRI data were collected from 22
healthy subjects on a 3.0 T MRI scanner. 3D spatial smoothing
was applied using a Gaussian filter with full width at half
maximum (FWHM) kernel sizes of 4 mm, 8 mm, and 12
mm in the preprocessing step. Group ICA with the Infomax
algorithm was performed at 75-IC decomposition. Network
temporal features including functional network connectivity
(FNC) and BOLD power spectra were calculated and compared
pairwise using a paired t-test with a false discovery rate (FDR)
correction for multiple comparisons. Results revealed robust
effects of smoothing kernel size on FNC measures of most ICNs,
largely indicating a decrease in inter-network connectivity as
the smoothing kernel size decreased. Power spectra analysis
showed increased high-frequency power (0.15 – 0.25 Hz) but
decreased low-frequency power (0.01 – 0.10 Hz) with a decrease
in the smoothing kernel size (corrected p< 0.01). These findings
provide a preliminary observation on the effect of spatial
smoothing kernel size on the FNC and power spectra.

I. INTRODUCTION

Functional magnetic resonance imaging (fMRI) represents
a powerful, non-invasive tool that can assist in investigating
the functioning of the brain. It indirectly measures neural
activity predominantly by the blood oxygenation level-
dependent (BOLD) effect among others. However, due to
the nature of BOLD signals and the inherent presence
of different artifacts, acquired images generally require
some types of preprocessing before meaningful statistical
inferences of neural processes are made [1]. Spatial
smoothing is a typical preprocessing step with a standard
procedure involving a convolving of the BOLD signals with
a Gaussian function of a specific width expressed in terms of
the Full Width at Half Maximum (FWHM) [1]. The primary
benefits of applying spatial smoothing are to improve the
signal to noise ratio (SNR) by suppressing the spatial noise.
But there are also drawbacks when using inappropriate
smoothing kernel size such as reduced spatial resolution
and specificity. There is no consensus on the kernel size.
Previous studies suggested that the smoothing FWHM should
be at least twice the size of the acquired voxel size (i.e.,
smoothing kernel S = 6 or 8 mm for a typical voxel size
of approximately 3-4 mm), while other advocated different
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kernel sizes ranging from 4 to 12 mm depending on the
nature of the data (resting state vs. task activation fMRI),
and analysis approach (univariate vs. multivariate) [2]–[4].

Previous research showed that large smoothing kernel may
cause a correlation-based functional overestimation [5]. In
a regression-based analysis study, spatial smoothing was
found to have an inverse effect on functional connectivity
thereby suggesting a dependency of functional connectivity
on different smoothing kernels [6]. A more recent study
examined the spatial smoothing effects on independent
component analysis (ICA)-based task fMRI data and found
an increase in the functional coupling strengths with spatial
smoothing [7]. Up to the present, the influence of spatial
smoothing on temporal features of ICA-derived intrinsic
connectivity networks (ICNs) have not been rigorously
investigated especially in resting state BOLD fMRI data.
This study aims to investigate the effects of spatial smoothing
kernel size on ICNs by focusing on the (1) functional
network connectivity (FNC [8]), related to the connectivity
between ICNs, and (2) power spectra of ICN time courses,
related to level of coherent activity within an ICN [9].

II. MATERIALS AND METHODS

A. Imaging Data Acquisition

Data was collected from twenty-two healthy subjects (ten
males, twelve females, average age 37.73 years) on a 3.0 T
MRI scanner (GE Medical Systems, Milwaukee, WI, USA)
with an 8-channel receive-only RF head coil array. Written
IRB-approved informed consent was obtained from every
subject prior to their participation. BOLD functional data
were acquired using EFGRE3D pulse sequence (TR = 2s, TE
= 30 ms, field of view (FOV) = 220×220 mm2, acquisition
matrix = 64×64, flip angle = 76o, slice thickness = 4 mm, gap
= 1 mm, number of slices = 31 slices, ascending acquisition).
Subjects were instructed to remain awake as they rested with
their eyes closed during the collection of 12-minute resting
state scan (360 volumes).

B. Imaging Data Preprocessing

Following MR image quality assessment in MRIQC
software (http://mriqc.readthedocs.io), imaging data were
preprocessed using SPM12b (Wellcome Department of
Cognitive Neurology, UK). Preprocessing pipeline included
motion and slice time correction, coregistration, and spatial
normalization into the Montreal Neurological Institute (MNI)
reference space. Three Gaussian kernels with different
FWHM sizes of 4, 8, and 12 mm were applied. The chosen
kernel sizes are commonly used in the fMRI studies [1]–[4].
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Fig. 1. Spatial maps of 40 ICNs are shown on the three most representative slices in neurological convention (p < 0.05, FWE corrected).

C. Group Independent Component Analysis

Group ICA with 75-IC was performed using the GIFT
toolbox (GroupICAT v4.0c, University of New Mexico,
USA) following a well-established ICA resting state
methodology [9]. ICNs were identified based on the
methodology recommended by Allen et al. [9] and our
previous studies [10]–[12]. 40 components were recognized
as ICNs representing valid BOLD signals and classified
into one of the visual (VN), auditory/language (AUD/LN),
sensorimotor (SMN), basal ganglia (BG), cognitive and
attention (CAN), default mode (DMN), subcortical (SCN),
Brain stem (BSN), and cerebellar (CBN) networks (Fig. 1).

D. Functional Network Connectivity and Spectral Analyses

Prior to connectivity analysis, ICN time courses were
detrended, despiked, and bandpass filtered at [0.01–0.15 Hz].
Both maximal time-lagged correlation and FNC without time
lag consideration were used to compute Pearson’s correlation
values [8] between ICNs. Fisher r-to-z transformation was
applied to normalize the FNC correlation values. Power
spectra were computed for each subject’s time courses
and separately for each smoothing condition [9]. Analyses
focused on full range of the frequency bands, i.e., [0.00 -
0.25] Hz. To determine which FNC correlations or spectral
bins were influenced by the spatial smoothing kernel size,
paired t-test was performed at FDR-corrected p < 0.01.

III. RESULTS

FNC correlations (with and without time lags) are shown
for each smoothing condition in Fig. 2. Significant FNC
differences at FDR-corrected p < 0.01 are shown in Fig. 3
for all ICNs (top), and for network average (middle) and
as connectogram (bottom). Significant differences in FNC
correlations with lags were also found at an exploratory,
uncorrected p < 0.01 (Fig. 4). Results summarizing the
effects of smoothing on ICN power spectra are shown in
Fig. 5 (FDR-corrected p < 0.01).

Fig. 2. A FNC correlations B FNC correlations network domain averaged
C FNC correlations with lags. FNC values were averaged over all subjects
(n = 22), and shown for three conditions with different spatial smoothing
kernel sizes: A 4 mm, B 8 mm, and C 12 mm FWHM.

IV. DISCUSSION & CONCLUSIONS

Spatial smoothing is generally a stable part of pre-
processing pipeline implemented through the use of a
Gaussian kernel with a certain FWHM. Using a relatively
high-level ICA as a data driven methods to decompose
BOLD resting state data to fine-grained ICNs, we observed
that compared to data that were preprocessed using larger
FWHM spatial smoothing kernel sizes, smaller kernels
influenced the between-network connectivity strength by
generally decreasing the FNC correlations. This effect was
shared among most ICNs in particular, the VN, SMN,
AUD/LN, SCN and a variety of CANs including the
dorsal and ventral attention networks, central executive, and
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Fig. 3. Significant differences in FNC correlations for A S4 – S8, B S8 – S12, and C S4 – S12, where S is smoothing kernel sizes of 4, 8, or 12 mm. For
each paired t-test, results are shown for all ICNs (top row), domain averaged (middle row) and as connectogram (bottom row). FDR corrected-p < 0.01.

Fig. 4. Significant differences in FNC using lags are shown for A S4 – S8, B S8 – S12, and C S4 – S12. For each paired t-test, significant effects of
FNC with lags (top) and significant effects of lags in seconds (bottom) are visualized as heatmap (left) and as connectogram (right). Uncorrected-p < 0.01.
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Fig. 5. Significant effects of smoothing kernel sizes on power spectra. A S4 – S8, B S8 – S12, and C S4 – S12, where S is smoothing kernel sizes of 4, 8,
or 12 mm. T-maps of the significant effects are shown as composite t-maps. Beta-values are averaged over significant clusters. (FDR corrected-p < 0.01).

salience networks. There were a few exceptions. Notably,
there was an increase in FNC correlations when we compared
S8 condition to S12 (i.e., S8 – S12, Fig. 3B) involving DMN,
BG, and BSN. The analysis of BOLD power spectra further
revealed an increased high-frequency power (0.15 – 0.25
Hz) but a decreased low-frequency power (0.01 – 0.10 Hz)
with a decrease in the smoothing kernel size. These findings
provide a preliminary observation on how smoothing kernel
size influences resting state FNC and BOLD power spectra.
To further elucidate the effects of preprocessing step such
as spatial smoothing on ICA network features, future studies
using larger sample sizes are needed.
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