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Abstract— We propose a computationally efficient algorithm
for seizure detection. Instead of using a purely data-driven ap-
proach, we develop a hybrid model-based/data-driven method,
combining convolutional neural networks with factor graph
inference. On the CHB-MIT dataset, we demonstrate that the
proposed method can generalize well in a 6 fold leave-4-patient-
out evaluation. Moreover, it is shown that our algorithm can
achieve as much as 5% absolute improvement in performance
compared to previous data-driven methods. This is achieved
while the computational complexity of the proposed technique
is a fraction of the complexity of prior work, making it suitable
for real-time seizure detection.

I. INTRODUCTION

Epilepsy is one of the most common neurological disor-
ders affecting about 50 million people worldwide. This disor-
der is associated with recurrent episodes of abnormal neural
activity in the central nervous system known as epileptic
seizures [1]. Based on the area where seizure starts and the
intensity of brain’s abnormal signals, patients with epilepsy
may suffer from different symptoms including auras, muscle
contraction, and loss of consciousness [2]. Epilepsy affects
the patients’ private and professional life; for instance, some
activities such as swimming, bathing, and climbing a ladder,
become dangerous as a seizure during that activity might
result in unpredictable injuries, and even death. Therefore,
early detection of epilepsy can notably improve the patient’s
quality of life.

The most common tool used to diagnose seizures is
electroencephalogram (EEG) [3]. While other various tech-
niques, such as magnetic resonance imaging (MRI) [4],
magnetoencephalography (MEG) [5], and positron emission
tomography (PET) [6] are sometimes used in conjunction to
EEG, EEG is widely preferred as it is economical, portable,
non-invasive and shows clear rhythms in the frequency
domain [7]. However, the review of EEG signals is a time-
consuming process, as a neurologist needs to monitor the
recording. Expertise is needed to diagnose epilepsy as each
case is quite variable, with different channels involved,
while the spectral content of the rhythmic activity varies
across individuals and signals, and is mostly contaminated by
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physiologic and non-physiologic interference [8]. Hence, au-
tomatic seizure detection is a valuable clinical tool to address
this issue and reduce the dependency on human experts.

Many machine learning studies have been developed for
automatic seizure detection problems. One of the most com-
mon approaches applies a support vector machine (SVM),
which is mainly followed by additional preprocessing steps
such as discrete wavelet transform (DWT) and fast Fourier
transform (FFT) to extract more features of EEG signals [9],
[10], [11], [12]. In the past decade, deep learning (DL)
techniques have become very popular in various applications,
including the analysis of time series EEG signals. Therefore,
different DL models have been investigated and tested in the
area of seizure detection. For instance, Khalilpour et al. [13]
applied a 1D convolutional neural network (CNN) to EEG
signals of five patients to predict preictal and interictal states
of the brain. In [14], the spectrogram of EEG measurements
was used as input to a 1D CNN. The authors in [15]
utilized DWT to represent the EEG segments, which is
used as input to a 1D CNN. Moreover, they combine the
DWT of the current, previous, and next block for predicting
the label of the current block, which helps exploit the
temporal correlations. Another common DL architecture is
2D CNN. Boonyakitanont et al. [16] applied 2D CNN to 24
epileptic recordings from 23 patients, where the signals are
segmented into 4-second blocks. They showed state-of-the-
art performance in terms of detection accuracy.

Most of these prior techniques divide the EEG recording
into blocks and treat these blocks independently. This does
not take advantage of the temporal correlations that exists
between consecutive blocks. While there are methods based
on CNN-recurrent neural network (RNN) architectures [17],
[18] that can mitigate this issue, it is well known that RNNs
have high computational complexity for training. Another
method used for exploiting temporal correlations is hidden
Markov model (HMM) [19]. HMMs belong to family of
factorizable joint distributions which admit low-complexity
inference via factor graph methods [20]. Despite proliferation
of seizure detection algorithms, having a computationally
efficient algorithm that can generalize to different patients
and perform seizure detection reliably in a real-time manner
is lacking.

In this work, we propose a computationally efficient
epileptic seizure detection algorithm based on a hybrid
model-based/data-driven approach using CNN-aided factor
graphs. First, we carefully design a 1D CNN for estimating
the probability that a 4-second block of EEG is a seizure
block. Our goal is to design a network that is applied to
the EEG signals directly, without feature engineering using
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transforms such as DWT or FFT. When using such feature
engineering, one must carefully select the parameters of
the transforms, and the performance of the trained model
can vary considerably based on these parameters. Moreover,
while these transforms typically provide information about
the frequency component of the EEG signals, they are not
necessarily impactful for capturing the dependence of the
EEG signals across different channels. Such a dependence
can be indicative of epileptic seizure. Our proposed 1D CNN
is designed to be able to capture the long term dependence
between EEG channels and operates on the signals directly
with minimal processing. To exploit the temporal correlation
between consecutive blocks for further improvement, we
use factor graph inference, specifically using HMM models
to capture temporal correlations among the signals. Our
proposed hybrid method is highly efficient compared to
previous works, where we reduce the inference complexity
by a factor of 2. Despite this decrease in computation,
our method achieves up to 5% absolute improvement in
performance measures such as precision, recall, and F1-score
in a 6-fold leave-4-patients-out evaluation.

The rest of this paper is organized as follows. In Section II
we describe the problem statement, the dataset that is used
for model development and evaluation, and the baseline
models. Then, in Section III we describe our proposed
method, which is evaluated and compared to prior methods in
Section IV. Finally, Section V provides concluding remarks.

II. BACKGROUND, DATASET, AND BASELINE MODELS

In this section, we first discuss the seizure detection
problem. We then describe the dataset that is used for
our hybrid model-based/data-driven algorithm development
and evaluation. We conclude this section by presenting the
baseline methods that are used for comparison in this work.

A. Seizure Detection Using EEG Signals

EEG is the electrical recording of the brain activities which
is the most popular diagnostic and analytical tool for epileptic
seizures. In seizure detection problem, there are some basic
terms as follows:
• Ictal state which is the time when the seizure occurs

(from start to end).
• Preictal state is a period of time just before a seizure

occurs.
• Interictal state refers to the period between seizures.
• Postictal state is a period of time just after the seizure

ends.
During reading an EEG, experts don’t only look at seizures
which are not always occurring when the EEG is done,
specifically with short EEG recordings, but they also have
to interpret interictal EEG signal and therefore, they are
trying to detect interictal epileptiform discharges (IED)[21].
IEDs are generated by the synchronous discharges of a
group of neurons in a region referred to as the epileptic
focus; however, the detection of these spikes is difficult to
accomplish due to their similarity to waves that are part of
normal EEG or artifacts and the wide variability in spike

morphology and background between patients. For instance,
abnormalities like breach rhythm (normal rhythm seen with
skull defects) can have focal, sharply contoured morphology
and they might be inferred as epileptic seizures. As such,
having an automatic system to detect and predict seizures
will resolve these issues.

B. Data Description

In this section we detail the data used in our study of
hybrid model-based/data-driven epileptic seizure detection.
We first describe the raw EEG data, after which we describe
the pre-processing carried out prior to its usage for training
and inference.

1) EEG Data: The dataset used in this study is the public
CHB-MIT Scalp EEG Database collected at the Children’s
Hospital Boston and consists of EEG recordings from pe-
diatric subjects with intractable seizures [22]1. Recordings
were collected from 23 subjects: 5 males aged 3-22 years,
17 females aged 1.5- 19 years, and one anonymous subject.
Each case contains 9 to 42 continuous EDF files from a
single subject. The duration of the recordings in each file
varies between one to four hours. All signals were sampled
at frequency of 256 Hz with 16-bit resolution. Since case 21
was obtained 1.5 years after case 1 from the same female
subject, we consider case 21 as a separate patient; therefore,
our experiment includes 24 subjects. Please note that since
we are evaluating the algorithms using a 6-fold leave-4-
patients-out method, this might negligibly effect only one
of the folds.

2) Data Pre-Processing: Since many of patient recordings
do not contain any seizures, in order to have a more balanced
samples from seizures, for each patient, we only selected
EDF files that have at least one seizure. Moreover, since
the length of the seizures are very short (from 7 seconds to
753 seconds) compared to the overall recording (from 959
seconds to 14427 seconds), we shorten the recording to 3
times the seizure duration before and 3 times the seizure
duration after the seizure. Therefore, for every second of
seizure data, there are 6 seconds of non-seizure data.

From the EEG channels, we use the 18 bipolar montage:
FP1-F7, F7-T7, T7-P7, P7-O1, FP1-F3, F3-T3, T3-P3, P3-
O1, FP2-F4, F4-C4, C4-P4, P4-O2, FP2-F8, F8-T8, T8-P8,
P8-O2, FZ-CZ, CZ-PZ. A notch filter is used to remove 60
Hz line noise from each EEG signal. Then 4-second blocks,
with 1024 sample points per block, are used as moving
window with step size of 1 second. The value of 4 seconds
was chosen to provide a good trade off between the number
of samples in a block and the stationarity of the observed
signals over a block[23]. We have observed that when the
width of window is increased, the seizure detection procedure
is not accurate enough. We now describe some of the prior
seizure detection algorithms developed using this dataset,
which will be used as baselines in this paper.

1This database is available online at PhysioNet (https:
//physionet.org/physiobank/database/chbmit/)
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C. Baseline Methods

We consider two recent works that presented state-of-the-
art performance on the CHB-MIT dataset as baselines in
these papers [16], [24]. The method in [16] is designed to
take the EEG signals as input without applying any type of
transforms. Therefore, we employ the same structure used
in [16] where the input shape for the model is (18,1024,1),
which implies considering each block as an image with
the size of (18,1024) and channel dimension of 1. The
method in [24] takes a graphical image of the EEG recording
as input rather than the EEG measurements. This type of
image-based feature was shown to achieve better detection
performance compared to other features-based methods in
seizure detection such as spectrogram or periodogram in a
recent study [25].

III. METHODOLOGY

Our hybrid model-based/data-driven algorithm combines
a carefully designed CNN, which estimates the presence
of seizure in a 4-second block, with factor graph inference
to exploit the temporal correlation between the blocks. We
begin this section by describing the the CNN architecture,
followed by the factor graph based inference step.

A. 1D CNN Architecture

2D CNNs, as utilized in the baseline methods detailed in
Subsection II-C, exploit the notion of locality, exhibited by
natural images, which implies that the level of correlation
between different elements typically grows the closer they
are in the image. However, in EEG segment matrices, each
element represents a single EEG measurement, which is
likely to be correlated with all the remaining measurements
taken at that time instance, regardless of their row index in
the matrix representation. This structure makes 1D CNNs,
which combine all measurements taken from different chan-
nels at a given time instance, more suitable compared to 2D
CNNs used in [16]. That allows the network to better learn
the correlations that may exist between different channels
since during seizures, the channel measurements can become
highly correlated.

In order to have a comparable configuration with the
baseline models, we use the same number of layers where
the input shape for this model is (1024,18). The inputs to
our 1D CNN are EEG signals with minimal prepossessing,
which only removes the 60 Hz component of the signals.
The baseline models detailed in Subsection II-C use a kernel
size of 3 and 2. Given the number of layers, this results
in a receptive field of approximately 30 milliseconds. Since
this is not enough to capture low frequency components of
the signal as well as the long term correlations between the
EEG channels, we design out kernel size to be much larger,
which results in a receptive field that covers approximately
1 second of the data. Fig. 1 shows the complete architecture
of the proposed 1D CNN.

As will be shown in Section IV, these simple changes,
namely choosing the kernel size carefully and using a 1D
CNN, improve the results significantly compared to the

TABLE I
COMPUTATIONAL COMPLEXITY IN FLOPS FOR ALL MODELS

Mega FLOPs
2D CNN [16] 14.5
2D CNN [24] 200

1D CNN 9.81
1D CNN+FG 9.81

1D CNN+GRU 29.4

Fig. 1. Proposed 1D CNN architecture.

baseline CNN model in [16]. This is because the network can
capture a wider range of frequency components in the signal
and also better capture the correlations between the EEG
channels. An additional advantage of using 1D CNNs stems
from their reduced complexity during inference compared to
their 2D counterparts. Although we have increased the recep-
tive field of the network by increasing the kernel size for our
proposed 1D CNN architecture compared to [16], the number
of floating point operations (FLOPs) during inference (i.e.,
the number of floating point multiplication and summation
operations) for the proposed method is almost down by a
factor of 2 compared to [16] and by a factor of 20 compared
to [24] as summarized in Table I. For training all networks,
we use the ADAM optimizer with the learning rate of 0.001,
batch size of 128 and 10 epochs of training.

B. Factor Graph Based Inference

The 1D CNN model outputs an estimate of the probability
that a given 4-seconds block corresponds to a seizure. This
probability is based solely on its input EEG segment block,
and does not account for the fact that the presence of a
seizure in a given block is likely to also reflect on its
preceding and subsequent blocks. To incorporate this tem-
poral correlation, we combine the probability estimates over
multiple blocks by assuming that the underlying temporal
correlation can be represented using a factor graph, and
utilize the sum-product method for inference [26]. In the
following we first describe how the underlying dynamics of
the seizure detection setup can be represented as a factor
graph, after which we discuss the sum-product algorithm and
elaborate on its combinations with the proposed 1-D CNN
model.

1) Factor Graph Representation of Underlying Dynamics:
Factor graphs provide a visual representation of a multivari-
ate function, typically a joint distribution measure, which
can be factorized into a partition of local functions [20].
These partitions capture the inherent statistical relationship
among variables affecting each partition. To represent a
multivariate function as a factor graph, every partition and
every variable must be associated with a unique node. Edges
connect function nodes to variables nodes if and only if
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Fig. 2. Factor Graph of a HMM with function nodes computed using a
1-D CNN.

the function is explicitly dependent on the corresponding
variable. We adopt the Forney style representation of factor
graphs, where variable nodes are replaced by edges [27].
This graphical representation enables desired quantities to be
computed at reduced complexity via message passing over
the factor graph [20].

To implement factor graphs inference, we first fix the
structure of the graph, i.e., the interconnection between
its nodes, which encapsulates our knowledge on the un-
derlying statistical relationships for the seizure detection
problem. A key feature preceding epileptic seizures is the de-
synchronization of its rhythmic activity [28]. To capture this
behavior in our model study, we adopt a first-order HMM.
The Markovian architecture focuses on the temporal char-
acteristics associated with the epileptic episodes, highlights
the effects of temporal correlations in seizure detection, and
facilitates efficient classification at reduced complexity. The
resulting factor graph under this model is illustrated in Fig. 2.

To formulate this mathematically, let y =
{y1, y2, · · · , yN}, and s = {s1, s2, · · · , sN} describe
the observed EEG measurements and latent seizure
states, respectively, over N consecutive 4-seconds blocks.
The latent states takes binary values, i.e., si ∈ {0, 1}
corresponding to the presence or absence of a seizure. We
assume that these states satisfy the Markovian property,
and use P (si|si−1) to denote the transition probability.
The transition probability is taken as a control parameter,
whose entries are fixed handcrafted values. In particular,
we set P (si = 1|si−1 = 0) to correspond to a 10.46%
of switching from non-seizure to seizure, and 17.9%
for transitioning in the opposite direction. Ideally, one
would like the transition probability matrix to reflect the
true transitions probabilities between seizure and non-
seizure state. However, the negligible seizure occurrences
throughout the recording of EEG episodes, produces a
highly unbalanced transition probabilities. Empirically, such
transition probabilities did not facilitate accurate inference,
hence hyper-parameter optimization of these probabilities
was adopt, so that superior performance can be achieved. To

close, we assume each EEG measurement depends only on
its corresponding seizure state. Under this postulated HMM,
the joint probability density function of the measurements
and the states can be written as:

P (s,y) =

N∏
i=1

P (si|si−1)P (yi|si). (1)

2) The Sum-Product Algorithm: Having established the
mathematical foundation and suitable factor graph repre-
sentation, the objective is to distinguish between seizure
and non-seizures states. Classification of these states is
achieved through accurate inference of the marginal dis-
tribution P (si,y), which is the metric used to compute
the maximum a-posteriori probability detector. In principle,
evaluating P (si,y) from (1) involves marginalization; a task
whose computational burden scales exponentially with N .
However, by employing factor graph inference via the sum-
product algorithm, the same computation scales only linearly
with N , making this operation computationally feasible for
the problem at hand.

The sum-product method relates the desired marginal
probability to a product of "messages", where for each
k ∈ {1, . . . , N} we write

P (sk,y) = µfj→sk(sk) · µfj+1→sk(sk). (2)

The terms µfj→sk(sk), µfj+1→sk(sk) in (2) are interpreted as
the "forward message" and "backward message" respectively,
and are computed by [20]

µfj→sk(sk) =
∑

{s1,··· ,sk−1}

n∏
i=1

fi(yi, si, si−1), (3)

and

µfj+1→sk(sk) =
∑

{sk+1,··· ,sN}

N∏
i=n+1

fi(yi, si, si−1), (4)

where,

fi(yi, si, si−1) = P (si|si−1)P (yi|si). (5)

For a Markov chain factor graph structure as in Fig. 2,
the computational complexity is comprised of evaluating the
forward (3) and the backward (4) messages. The recursive
nature of the computations implies that the number of FLOPs
grows linearly with the number of 4-second blocks in a given
EEG episode, denoted by N . At the same time, the number
of FLOPs also increases with the cardinality of the seizure
state, denoted by |S|, as well as the order of the Markov
chain. Here, all seizure states are binary, hence |S| = 2, and
the factor graph is that of a first-order Markov chain. As a
result, each message computation requires 4 multiplications
and 2 addition operations. The result of these computations
over a complete EEG episode requires merely 12N FLOPs,
which is negligible compared to the complexity of applying
the neural network models, as reported in Table I.
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3) CNN-Aided Factor Graphs: Implementing the sum-
product algorithm requires knowledge of the underlying
probability distribution P (yi|si). In the case of seizure detec-
tion from EEG measurements, acquiring such a distribution
from first principles is unattainable. Accurately character-
izing epileptic seizures to high fidelity requires a combi-
nation of dynamical features and spatial-temporal features,
for example the entropy, amplitude, synchronization, spec-
tral power amongst other features associated with epileptic
episodes, making the underlying distribution highly complex
and intractable. To contend with this difficultly, we follow the
work [29], combining DL models and inference algorithm.
In particular, we utilize the output of the 1D CNN as an
estimate of the conditional distribution P (yi|si) required in
order to compute the function nodes2. via (5). Combining
these approaches yields a hybrid model-based/data-driven
detector, in which factor graph inference constitutes a robust
final stage incorporating temporal correlation with the CNN
outputs as illustrated in Fig. 2.

To complete the picture, the detection mechanism requires
a comparison measure, i.e., a threshold, which represents a
decision boundary for one to distinguish between different
seizure states based on the estimated marginal distribution
produced by the sum-product method. Treating the threshold
as fixed, if the resultant probability of a seizure state yielded
by the CNN-aided factor graph exceeds that of the applied
threshold, then the system is said to be in a seizure state.
Otherwise the system is said to be in a non-seizure state. As
shown in the sequel, this approach allows to achieve accurate
detection with controllable tradeoffs between detection and
false alarm.

IV. RESULTS AND DISCUSSION

We now discuss our evaluation results in this section. We
begin by defining the performance metrics we employed for
evaluation followed by the results and the discussions.

A. Evaluation Method and Performance Metrics

We apply 6-fold leave-4-patient-out cross validation to
evaluate the performance and the generalizability of our
hybrid model-based/data-driven approach. Specifically, in
each fold, 4 patients are kept for testing and 20 patients
for training. The dataset used for evaluation, similar to train
data, is segmented into 4-second blocks with moving window
of 1 second where each block is labeled. To evaluate the
performance of the models trained in each fold, we use the
following metrics.
• F1-score: is a harmonic mean of recall and precision

where former indicates the proportion of real positive
cases that are correctly predicted positive and latter
denotes the proportion of predicted positive cases that
are correctly real positives [31].

2In principle, a CNN classifier is trained with the cross-entropy loss
to detect si from yi, which is an estimate of the conditional distribution
P (si|yi). Here we use the CNN output as an estimate of the conditional
P (yi|si), instead of converting it via Bayes rule as done in [30], to avoid
instabilities due to dividing by the estimated marginal of the seizure state si.

TABLE II
SUMMARY OF RESULTS

AUC-ROC AUC-PR F1 score
2D CNN [16] 87.27± 0.05 72.05± 11.46 85.58± 1.63
2D CNN LOO [24] N/A N/A 46.6± 31.0
Our 1D CNN 89.53± 0.04 74.53± 10.56 89.22± 2.36
Our 1D CNN-FG 90.23± 0.05 76.73± 11.44 90.55± 3.84
Our 1D CNN-GRU 90.56± 0.03 76.77± 8.05 90.42± 3.15

Fig. 3. Area under ROC curve for all architectures.

• AUC-PR: is area under the precision-recall curve where
high area under the curve means low false positive rate
and low false negative rate.

• AUC-ROC is area under receiver operating character-
istics (ROC) curve which is performance measurement
for classification problems at various threshold settings.

We choose these performance measures since the data is
imbalanced (i.e., for every block with seizure we have
6 blocks with no seizures, and AUC measures are great
indicator of performance over imbalanced data.

B. Numerical Results

We consider 5 models for comparison. The baselines
models from [16], [24], the 1D CNN we proposed, the CNN-
aided factor graph, and the 1D CNN with GRU for capturing
the temporal correlations. From the baseline models, we
implement the exact architecture in [16] and evaluate it using
the 6 fold leave-4-patient-out. For [24], since it uses images
as features, we just report the results of their leave-one-
patient-out (LOO) evaluations from their paper.

Fig. 3 shows the average AUC-ROC across the 6 folds,
while Table II summarizes all the results. As can be seen,
changing the model from 2D CNN proposed in [16] to our
proposed 1D CNN architecture results in approximately 2%
improvement across all performance measure. Our hybrid
model-based/data-driven CNN-aided factor graph further im-
proves the results by as much as 2%. Compared to [24],
we perform a leave-4-patient-out evaluation as opposed to
leave-one-patient-out. This reduces the number of patients
we use for training compared to [24]. Despite this reduction,
we achieve a much higher F1 score compared to [24] as
shown in Table II. Moreover, while AUC-PR is not reported
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in [24], the precision of 51.4±34.1 and recall of 53.1±25.5
is reported, which is significantly lower than the performance
achieved by our proposed approach.

The 1D CNN with GRU achieves the same performance as
our proposed CNN-aided factor graph inference method for
all performance metrics. This demonstrates that the hybrid
model-based/data-driven approach proposed here can achieve
similar performance as a purely data-driven methods that
employ deep and highly parameterized neural networks. This
performance is achieved by our CNN-aided factor graph at
a fraction of the computational complexity of deep learning
based approaches as summarized in Table I. This makes the
proposed method suitable for real-time seizure detection.

V. CONCLUSIONS
In this paper, we proposed a computationally efficient

hybrid model-based/data-driven method using CNN-aided
factor graphs for seizure detection. First, we carefully de-
signed a 1D CNN for estimating the probability that a 4-
second block of EEG recording is a seizure block. We then
used this neural network in the factor node of the factor
graph for inference. We demonstrated that the proposed
method generalizes well to other patients using a 6-fold
leave-4-patient-out cross validation. We also showed that our
algorithm achieves up to 5% improvement in performance
compared to prior work, while maintaining much lower
computational complexity. This makes our approach ideal
for real-time seizure detection. For future work, we plan
to expand our approach to classifying focal and generalized
seizures since this is a challenging task in clinical procedures.
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