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Abstract— Fetal heart rate monitoring using the abdominal
electrocardiograph (ECG) is an important topic for the
diagnosis of heart defects. Many studies on fetal heart rate
detection have been presented, however, their accuracy is
still unsatisfactory. That is because the fetal ECG waveform
is contaminated by maternal ECG interference, muscle
contractions, and motion artifacts. One of the conventional
methods is to detect the R-peaks from the integrated power of
the frequency corresponding to the fetal heartbeats. However,
the detection accuracy of the R-peaks is not enough. In this
paper, we propose a method to generate the candidates of
R-peaks using the first derivative of the signal and to pick
up the estimated heartbeats by a multiple weighting function.
The proposed multiple weighting function is designed by the
Gaussian distribution, of which parameters are set from a grid
search with the goal of minimizing the standard deviation of
RR intervals (neighboring R-peaks intervals). The validation
for the proposed framework has been evaluated on real-world
data, which got the better accuracy than the conventional
method that detects R-peaks from the integrated power and
uses the weighting function produced by a fixed parameter
of Gaussian distribution [12]. The averaged absolute error
(AAE) which compares the estimated fetal heart rate and
the reference fetal heart rate has been decreased by 17.528 bpm.

Index Terms— Non-invasive ECG recordings, fetal electro-
cardiogram, fetal heart rate, weighting function,

I. INTRODUCTION

Fetal heart rate is an important indicator for evaluating
the health status of the fetus [1]. Fetal heart rate can be used
to identify possible abnormalities, during the early stages
of pregnancy and delivery, such as distress and congenital
heart disease [2] [3]. Therefore, improving the accuracy of
fetal heart rate detection is of great significance for diagnosis
purposes.

To collect data, there are usually two methods, where the
invasive method is a reliable way to collect electrocardiogram
(ECG) recordings from the scalp. However, this method
can only be used when the fetal membranes have ruptured.
Moreover, it may cause discomfort to the mother and injury
to the fetus [5]. For non-invasive methods, so far, the most
standard technology to collect the recording is based on
the Doppler ultrasound (US) by a US transducer fixed on
the maternal abdomen. This is widely used to monitor fetal
heart rate (FHR) as an economic and user-friendly tool [4].
However, the system will not record any samples when the
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fetus or mother is moving [6], which will cause the accuracy
of the fetal heart rate detection to decrease [7]. Moreover,
the ultrasound may have negative effects and it is unfavorable
for long-term monitoring [8]. One of the other non-invasive
methods for monitoring fetal heart rate is to use abdominal
ECG. However, since the abdominal ECG is contaminated by
maternal ECG signal, muscle contraction, fetal brain activity,
and other noise, abdominal ECGs require advanced signal
processing to overcome the problem of low signal-to-noise
ratio (SNR). Therefore, it is not easy to accurately estimate
the position of the fetal R-peaks and fetal heart rates. Another
major problem is that when the fetal R wave overlaps with
the maternal R wave, it can be lost because the maternal R
wave is extremely large.

Various related works on fetal heart rate extraction are
proposed. To develope accurate methods for FHR detection,
the PhysioNet/CinC Challenge 2013 was held [9]. In other
examples, the methods using blind source separation (BSS)
for separating mixture signals are discussed in the literature
[10], [11]. The single-set BSS methods include independent
component analysis (ICA). However, the noise is usually
independent among each electrode, and the nonlinearity of
the mixed observation signals increases. Thus, the extraction
of the mixed observation would be incomplete and it is
difficult to extract the fetal signal. In another example, the
weighting mask for enhancing the hidden fetal R-peaks is
introduced in [12]. The R peaks are selected by detect-
ing the integrated power in the frequency corresponding
to the candidate heartbeat. The R peaks are enhanced by
the weighting mask according to the distribution of the
neighboring temporal intervals between each pair of peaks. In
addition, the parameters of the weighting mask function are
determined by the prior information of the position and the
interval of each candidate. To improve the effectiveness of
weight, an adaptive weighting will be used for the estimation
of parameters.

In this paper, we propose a method using the first deriva-
tive of the ECG signal and the multiple weighting function
to improve the accuracy of fetal heart rate detection. The
approach allows us to generate the candidate R-peaks using
the first derivative of the signal and pick up the estimated
heartbeats by a weighting function. The proposed multiple
weighting function is designed by the Gaussian distribution,
of which parameters are adaptively set from a grid search
with the goal of minimizing the standard deviation of RR in-
terval. The experiment was designed in four scenarios, which
considered a combination of two methods for generating
candidate peaks and two weighting functions. Two methods
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Fig. 1. A block diagram of the proposed framework.

of generating the candidate peaks are the method of using
the first derivative of the signal and the integrated power.
As for the weighting functions, one of them is the multiple
weighting function designed by the Gaussian distribution,
and its parameters are adaptively set from a grid search.
Another method is to use the weighting mask, which is
introduced in [12] in combination with the integrated power
method to generate candidate R peaks. It is shown that the
method using the first derivative of the ECG signal and
the multiple weighting function significantly improves the
accuracy of the fetal heart rate detection.

The organization of this paper is as follows. The proposed
method is introduced in Section II, and Section III shows the
experimental setup and the corresponding results. Finally, the
conclusions are given in Section IV.

II. PROPOSED METHODS

The architecture of the proposed framework is illustrated
in Fig. 1. The details of each step will be introduced below.

A. Preprocessing

In the first step, since the output of the A/D converter
is contaminated, the preprocessing is performed to remove
saturated data and invalid data from the raw abdominal
ECG. In this process, the centering operation is performed
by subtracting the mean of the signal, and normalization is
performed to set the amplitude between -1 and 1. We im-
plement the band-pass filter between 2 and 46 Hz to remove
the noise interference using a linear-phase Kaiser window.
Spike values are removed using the algorithm presented in
[13], because the outliers affect the fetal heart rate detection.

B. Maternal cycle removal

An algorithm presented in [14] is considered for removing
the maternal cycle. The approach first extracts the maternal
R-peaks from the preprocessed AECG. After the locations
of maternal R-peaks are detected, the maternal cycles are
removed from the AECG by a template. The template is
built centered on the maternal R-peak with a duration.

Because the AECG is non-stationay, the template is up-
dated by integrateing cycles while removing the contribution
of the oldest QRS complex. To deal with mis-detections,
incoming cycles that do not match with the template are

rejected. The correlation coefficient denoted as C between
the template cycle and an incoming cycle is calculated. This
is fomulated as

C =
∑

n
j=1(t j− t̄)(m j− m̄)√

∑
n
j=1(t j− t̄)2(m j− m̄)2

, (1)

where t is the template cycle and m is incoming MECG
cycle. t̄ and m̄ are their mean value, and n is the number of
the maternal peaks. An incoming cycle of which C is less
than 0.8 will be not used to update the template cycle t. After
removing the maternal cycles, we call it the residual signal.

C. Fetal R-peaks detection

As we can see from the schematic diagram of the proposed
framework in Fig. 1, to detect fetal heart rate, we first
generate the candidates of the R-peak. Next, by designing
a weighting function, we can detect the fetal R-peaks from
the candidates. In this section, we introduce two methods to
generate candidate peaks, which are the way using the first
derivative of the signal and the integrated power. In addition,
two weighting functions called multiple weighting and the
weighting mask are designed. The weighting mask algorithm
has been presented in [12].

1) Generating the candidates of R-peaks: (1-1) Using the
first derivative of the residual signal : One of the methods to
generate the candidate peaks is to calculate the first derivative
of the signal, which is denoted as S. The fetal R-peak
candidates calculated according to the residual signal are
given by

S =
f ′(t)

std( f ′(t))
, (2)

where f ′(t) is the first derivative of the residual signal, and
std( f ′(t)) is the standard deviation of f ′(t).
(1-2) Using the integrated power : Another way of detecting
the candidates is to select the peaks of the integrated power in
the frequency domain corresponding to the candidate heart-
beat. The short-time Fourier Transform (STFT) is applied to
obtain the time-frequency spectrogram of the residual signal
in the form of

F(ω, t) =
∫

∞

∞

f (τ)w1(τ− t)e− jωτ dτ, (3)

where f (t) is the residual signal and w1(τ) indicates the
Hanning window. We calculate the integrated power in the
selected frequency from 20 to 50 Hz.

g(t) =
∫ 50

20

∫
∞

∞

f (τ)w1(τ− t)e− jωτ dτd f . (4)

2) The multiple weighting method and the weighting
mask: Based on the assumption that the RR interval follows
a Gaussian distribution, the amplitudes of the peaks are
weighted. The peak with the maximum amplitude value
within the window length is selected as the estimated R-peak.
The window is slid from this location as the base point, of
which length is 2 seconds. The weighted amplitude of each
candidate peak denoted as Weighted peak(τ) is expressed as
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Fig. 2. The raw recording and filtered AECG.

Weighted peak(τ) = w2(τ− ι) · r(τ), (5)

where the Gaussian distribution is represented as a function
w2(t). τ is the location of candidate peaks. ι is the previously
estimated location. The amplitude of the candidate is denoted
as r(τ). We adaptively select the parameters of the Gaussian
distribution by changing the value of the mean µ and the
standard deviation σ . µ is taken in 10 steps from 350 to
480, and σ is taken in 5 steps from 0 to 50. The range of
µ is taken from the possible fetal heart rate. As a result, the
number of pairs of µ and σ is 154, and we get 154 sets of
the estimated R-peaks. For all of these sets of the estimated
R-peaks, we calculate the standard deviation of RR intervals.
Finally, we select the set of estimated R-peaks of which the
standard deviation of RR intervals gives the minimum value.

The second method of weighting, the weighting mask is
generated according to the distribution of the neighboring
temporal intervals between each pair of peaks [12]. The
weighting is formulated as

hmask,i(t− τi) = hi(|t− τi|)+
1
2

hi

(
|t− τi− ti|

2

)
+

1
3

hi

(
|t− τi−2ti|

3

)
, (6)

where τi is the location of the candidate peaks and ti is
the length of the interval between the neighboring candidate
peaks. The function h(t) is the Gaussian function, of which
the mean is 0 and the standard deviation is 1 according to the
conventional method [12]. hmask,i is the base of the weighting
function generated from each candidate peak. The masking
weighting function is represented as

Mask(t) =
∑

N
i=1 hmask,i(t− τi)− el

eu− el
, (7)

where N is the number of the bases of the weighting function,
eu is the upper envelope and el is the lower envelope of the
sum of the bases of weighting function. Mask(t) is built by
summing all the bases of the weighting function expressed
as Eq. (7).

III. EXPERIMENT

A. Data Description and measurement

We used the abdominal ECG signals of ten subjects, which
were recorded by the non-invasive sensor placed on the
expectant mother’s abdomen. The recording of duration is
60 s, and the sampling frequency is 1kHz. The data and

Fig. 3. The filtered signal and the locations of estimated maternal R-peaks.

Fig. 4. The filtered signal and the residual signal.

the reference annotation were obtained from Atom Medical
Corporation and associated medical experts, in terms of the
fetal heart rate and the fetal RR interval. We used these
annotations to evaluate the performance of the proposed
framework for fetal HR detection.

We consider the averaged absolute error (AAE) which
compares the estimated fetal heart rate and the reference fetal
heart rate given by

AAE(FHR, F̂HR) =
1
L

L

∑
i=1

∣∣∣∣∣∣∣∣ 60 · fs
FRRIi

− 60 · fs
F̂RRIi

∣∣∣∣∣∣∣∣ , (8)

where F̂HR is the estimated fetal heart rate and FHR is the
corresponding reference FHR. L is the number of fetal heart
rates. The estimated fetal RR interval is denoted as F̂RRI,
and FRRI is the corresponding reference.

B. The experimental setup

We introduce the figure of the signal for each step of the
framework as shown in Fig. 1. Fig. 2 shows the raw recording
and the filtered AECG after preprocessing. Fig. 3 shows the
filtered signal and the location of the estimated maternal R
peaks, and Fig. 4 shows the filtered signal and the residual
signal after maternal cycle removal. We show the residual
signal and the figure of S with the location of the estimated
fetal R-peaks and the reference annotations of fetal R-peaks
in Fig. 5 and Fig. 6. Some of the reference annotations
cannot match the peaks found in the residual signal and S.
In contrast, we can see that the reference annotations match
the estimated fetal R-peaks.

The experiment was designed in four scenarios, which
considered a combination of two methods for generating
candidate peaks and two weighting functions. Two methods
for generating the candidate peaks consist of the method
using S and the integrated power. As for the methods for
weighting, one of the two methods is the multiple weighting
function designed by the Gaussian distribution of which
parameters are adaptively set from a grid search. The other
method is the way to use the weighting mask. The details
are listed below.
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TABLE I
AAE [BPM] BETWEEN THE ESTIMATED FHR AND THE REFERENCE FHR.

Subject A B C D E F G H I J

AAE [bpm] (1) 2.4428 3.8199 3.1244 3.8198 1.8117 2.4006 1.4616 3.8203 4.7094 1.6335
(2) 5.5411 13.0182 4.4551 5.6386 1.8705 1.0382 1.4291 5.0900 6.2455 1.4882
(3) 11.560 10.980 9.8638 7.5354 8.6740 9.1705 10.570 17.455 11.075 14.976
(4) 19.107 16.365 18.287 13.240 14.271 14.688 16.906 17.351 22.237 13.981

Fig. 5. The residual signal with the location of the estimated R-peaks and
the reference annotations of fetal R-peaks.

Fig. 6. S and the reference annotations of fetal R-peaks.

(1) The first item introduces the scheme in which the
derivative function S is considered to generate candidate
R-peaks, and the multiple weighting function designed by
the Gaussian distribution is associated.
(2) The second item introduces the scheme, which is also
composed of a derivative function S to generate candidate R-
peaks, but the weighting uses the weighting mask function
defined in Eq. (7).
(3) The third item uses the integrated power in the frequency
domain to generate the candidate R-peaks and is associated
with multiple weighting functions designed by the Gaussian
distribution.
(4) The last item uses the integrated power in the frequency
domain to generate the candidate R-peaks, but the weighting
is associated with the weighting mask function defined in
Eq. (7).

C. Results

According to the results in TABLE I, our proposed method
introduced in the first item (1) got the better accuracy to
detect fetal heart rates than the other three methods except for
the subjects F, G, and J. The results of (1) and (3) show that
the method using multiple weighting functions gives better
detection accuracy. The possible reason is that the method
can adaptively set the parameters from a grid search with the
goal of minimizing the standard deviation of the RR interval.
In contrast, the weighting mask deals with the parameters as
a fixed value that are derived from the detected R-peaks. The

major flaw of the weighting mask used in (2) and (4) is that
the wrong R-peak detection cannot be avoided, which leads
to inaccurate candidates. In addition, the derivative function
of the signal used in (1) and (2) can enhance the slope of
the peak position.

IV. CONCLUSION

In the paper, we propose a method using the first derivative
of the ECG signal and the multiple weighting function
to improve the accuracy of fetal heart rate detection. The
approach allows us to generate the candidate R-peaks using
the first derivative of the residual signal and pick up the
estimated heartbeats by a weighting function. The proposed
multiple weighting function is designed by the Gaussian
distribution, of which parameters are adaptively set from
a grid search with the goal of minimizing the standard
deviation of RR interval. To show the effectiveness of the
proposed method, the experiments were designed in four
scenarios, which considered a combination of two methods
for generating candidate peaks and two weighting functions.
In general, the method using multiple weighting functions
gives better detection accuracy. The possible reason is that
the method can adaptively set the parameters from a grid
search with the goal of minimizing the standard deviation of
RR internal.
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