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Abstract— In this contribution, we focused on optimising a
dynamic flow-based shear stress system to achieve a reliable
platform for cell shear modulus (stiffness) and viscosity as-
sessment using quantitative phase imaging. The estimation of
cell viscoelastic properties is influenced by distortion of the
shear stress waveform, which is caused by the properties of
the flow system components (i.e., syringe, flow chamber and
tubing). We observed that these components have a significant
influence on the measured cell viscoelastic characteristics. To
suppress this effect, we applied a correction method utiliz-
ing parametric deconvolution of the flow system’s optimized
impulse response. Achieved results were compared with the
direct fitting of the Kelvin-Voigt viscoelastic model and the
basic steady-state model. The results showed that our novel
parametric deconvolution approach is more robust and provides
a more reliable estimation of viscosity with respect to changes
in the syringe’s compliance compared to Kelvin-Voigt model.

I. INTRODUCTION

Examination of a cell mechanical properties becomes
an important parameter in cell biology [1]. Typically, the
viscoelastic parameters are used to describe particular cells’
mechanical properties using different methods (e.g., atomic
force microscopy, optical trapping). Nevertheless, the appli-
cation of shear stress on adherent cells in a flow chamber
setup has become widely used due to the relatively easy setup
and promising results (e.g., in [2]). Furthermore, the con-
nection with quantitative phase imaging (QPI) may provide
a possibility to evaluate cell deformation after shear stress
in a label-free setup [3]. The quantification of shear stress
influence on adherent cells is typically based on assessing the
cell’s centre of mass as a step response [4], e.g. the reaction
of the cell’s movement on the step change of the flow. Due
to the hydrodynamic system properties and elastic properties
of the tubing and pumping system (typically a syringe), it
is impossible to apply a step change of fluid flow (i.e. shear
stress) on the cells. There is a noticeable delay in reaching
the flow to the set level (in particular in a system with
flexible tubing) causing a systematic error in measurements.
Minimalisation of this effect may therefore increase the
reliability of cell viscoelastic properties estimation. It may
make it possible to obtain reproducible results with more
compliant plastic syringes (often more easy-to-work with)
and significant refinement with rigid ones.
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In this paper, we apply the linear system theory to a typical
fluid system setup for shear stress application. We apply the
deconvolution of the system impulse response to increase
the robustness and reliability of the Kelvin-Voigt viscoelastic
model. We also compare this approach with direct model
fitting and with the estimation of cell shear modulus in
steady-state.

II. METHODS

A. Cell preparation

Adherent PC-3 prostate cancer cell lines were cultured in
Ham’s F12 medium with 7% fetal bovine serum. Themedium
was supplemented with antibiotics (penicillin 100 U/ml and
streptomycin 0.1 mg/ml). Cells were maintained at 37°C in
a humidified (60%) incubator with 5% CO2 for 48 hours
before exposure to shear stress. RPMI medium with FBS
and without antibiotics was used for shear stress induction.

B. Shear stress system and data acquisition

A simple setup for shear stress application is shown
in Fig. 1. A QPI microscope (Telight, Q-Phase) equipped
with objective 10x/NA 0.3 was used for acquisition. A
programmable syringe pump (Syringe pump Chemyx Fu-
sion 4000) is used to set the flow rate through the tubing
connected to the flow chamber (Ibidi µ-Slide VI 0.1 with
ibiTreat surface). The actual value is measured by a flow
meter (Sensirion SLF3S-1300F) and recomputed to shear
stress using the flow chamber’s geometry based on the flow
Application Note.

C. Image processing and strain calculation

QPI provides the phase image Φ(x,y), which allows to
generate a quasi-3D cell projection d(x,y) via the assumption
of a homogeneous refractive index difference ∆n (0.02), be-
tween the culture media and the cell. Alternatively, under the
assumption of homogeneous specific refraction increment,
α (0.18 µm3/pg) it allows to generate mass density image
m(x,y) :

d(x,y) =
Φ(x,y)λ

2π∆n
, m(x,y) =

Φ(x,y)λ
2πα

, (1)

where λ is the wavelength of acquisition light. Therefore,
both median cell height b and cell centre of mass (CoM)
movement can be measured and used for the calculation of
shear strain [4]

γ(t) = tan(θ) =
CoM(t)

b
(2)

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 439



where theta is the shear angle of deformation created by
shear stress.

For further analysis, segmentation and tracking of cells
in QPI image sequence are required to calculate h and
CoM(t) (centre of mass movement in time) for individual
cells. If individual cells were close and hard to separate,
the whole cluster was used for b and CoM(t) calculation
to avoid mass changes caused by segmentation inaccuracies.
For segmentation, a stack of video frames was filtered by
a 3D median filter to suppress noise in each frame. The
segmented cell clusters were obtained by thresholding using
a small positive threshold value. Obtained binary images
were post-processed by area-based filtering, which removes
small objects. Cell clusters touching the border of the actual
field of view were removed in each frame (i.e., the whole-
cell cluster must be visible). Due to the 3D median filtering
and the relatively high acquisition frame rate, the segmented
cell cluster forms 3D objects in the video stack image
(the cell area in each frame is overlapped with the same
cell area in the following frame), which provides tracked
cells for following analysis. Afterwards, CoM(t) and b were
calculated for each cell cluster.

Fig. 1. Block scheme of flow system and stress measuring. Blue – flow
system generating shear stress in the cell chamber, gray – data acquisition
and processing.

D. Strain signal processing and analysis

The cell viscoelastic properties can be modelled by the
Kelvin-Voigt (K-V) model, which is described by the par-
allel connection of the spring (with shear modulus G) and
damping element (with damping factor η). Here we sum-
marize previously applied methods for their estimation, and
we describe a novel convolution-based approach for their
estimation. The whole analysis process is summarized in
Fig. 2. For the K-V model and steady-state model, it is
necessary to estimate the cell migration movement from the
strain signal and detect the start and end of individual pulses
(see Fig. 3a and b with the average pulse signals).

The migration movement still occurred in the direction
of the applied flow, which biased the CoM values. To
suppress this effect, the movement signal was removed by
5-th order polynomial fitting and signal subtraction. The
sample differences were calculated, and the peak detector
was applied (with a selected threshold and minimum peak

distance). The sample differences of the shear stress signal
were calculated, and the peak detector was applied to detect
the start and end of the pulse. Because of the delay between
the generated shear stress signal and the CoM response,
the detected pulse start and end positions did not exactly
correspond to the extrema in the CoM signal. The correction
of the position was done by a locally restricted maxima
detector. Positions of the start and end of the pulses were
then used for the calculation of differences in the steady-
state model and for the selection of a part of the signal for
K-V model fitting.

For the cell viscoelasticity estimation, the three following
methods/models have been used:

1) Kelvin-Voigt model: The response (strain) of the cell
to the unit step function of the shear stress can be described
by a decaying exponential model:

βstep(t) =
1
G

(
1− e−

G
η

t
)
. (3)

The applied shear stress has typically specific value(s) τ0 and
therefore the response can be modified as:

γstep(t) = τ0βstep(t) =
τ0

G

(
1− e−

G
η

t
)
. (4)

The left-hand side of this equation corresponds to the shear
strain (eq. 2). The values of τ0 are known and set during
the experiments; thus, the model parameters (cell shear
modulus G and viscosity η) can be obtained by simple curve
fitting. The model was fitted by a robust bisquare method
[5] optimized by Levenberg–Marquardt algorithm (nonlinear
least-squares) [6]. Additionally, we have included the fitting
of the parameter c, which is added to the fitted exponential
function and serves for the cell movement correction because
the previous cell movement correction is not precise enough.

2) Steady-state model: The K-V model for steady-state
condition provides a simple way to estimate the shear mod-
ulus G. If we let t → ∞, then the expression in the bracket
of eq. 4 is equal to 1 and G can be estimated as:

G =
τ0

γ(∞)
. (5)

Thus, the determination of CoM shift in steady-state can
provide a simple shear modulus estimation. A pulse length
of 20 seconds was used in our experiments, sufficient for
achieving steady-state with the required precision.

3) Parametric deconvolution: The single cell can be con-
sidered as a linear system, which can be described by an
impulse response h(t) computed as a differentiation of the
step response (eq. 4):

h(t) =
d
dt

γstep(t) =
τ0

η
e−

G
η

t . (6)

This impulse response can be further used to model the
origin of the cell’s shear strain as γ(t) = h(t) ∗ τ(t). This
general expression for the arbitrary shear stress waveform
τ(t) might be applied in our model identification problem.
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Fig. 2. Explanation of the cell viscoelasticity estimation by three different methods. Upper row shows QPI data frames and the resulting shear strain
curves over time derived by the used image processing steps (blue signals). Lower row shows calculated shear stress signals corresponding to the measured
volumetric flow (blue signals). The basic principles of steady-state method (a), Kelvin-Voigt model fitting (b), and parametric deconvolution method (c)
are shown. Pink colour and black arrows show the needed measurement and resulting parameters/signals.

Let us formulate an optimization task with the following cost
function:

argmin
t0,η ,G

||γ(t)− τ(t− t0)∗hη ,G(t)||1, (7)

where hη ,G(t) is a parametric impulse response (eq. 6) with
unknown parameters η (cell viscosity) and G (cell shear
modulus), τ(t − t0) is a shear stress applied on the cell
(generally shifted by unknown shift t0) and γ(t) is the
measured cell displacement normalized by its height (i.e.,
shear strain). Nevertheless, we observed that low-frequency
’trend’ signal of cell migration movement is typically present
in the measured data (see Fig. 3e) and this additional signal
distorts the optimization process. To cope with this problem,
we extended our optimization problem by additional terms
composed of the polynomial Pn

p(t) fitting:

argmin
t0,η ,G,p

||γ(t)− τ(t− t0)∗hη ,G(t)−Pn
p(t)||1 = (8)

argmin
t0,η ,G,p

||∆t0,η ,G(t)−Pn
p(t)||1. (9)

This can be optimized using any black-box optimization
method (pattern search was used [7]); however, to speed
up the optimization, only t0,η ,G are optimized using black-
box optimization and polynom parameters p are found opti-
mally for each iteration using polynomial fitting to residuum
∆t0,η ,G(t), which is a simple convex optimization problem.

III. RESULTS AND DISCUSSION

In our experiments, we tested the influence of the syringe
on the estimated cell parameters. We observed that different
syringes significantly influence the waveform of the flow,
particularly during the fast flow changes, due to the differ-
ent syringe compliances. The first syringe was FORTUNA
Optima glass syringe 20 ml (referred as ’rigid’), and the
second one was Braun Original-Perfusor plastic syringe 20
ml (referred as ’flexible’). The ’flexible’ syringe has the
rubber seal of the plunger, which increases its compliance.
Stimulation in our experiments consists of 3 subsequent
square pulses, each lasting lasting 20 seconds, with a 20
seconds gap in between. The magnitude of the pulses was
set to achieve shear stress equal to 5 Pa, which is in the

physiological range (i.e., 0 Pa – 10 Pa, according to Malek
et al. [8]). This preset shear stress value is sufficient for
cell deformation, which causes the movement of the CoM
position of the particular cells. To evaluate the methods of
strain signal analysis from Section II-D, i.e., K-V model,
steady-state model, and parametric deconvolution model, we
have measured four fields of view with both ’rigid’ and
’flexible’ syringes with the proposed setup (Section II-B).
The number of cells was 75 and 83 for ’flexible’ and ’rigid’
syringe, respectively. Average of the shear strain and shear
stress signals of all cells for both syringes is shown in Fig. 3 a
and b, respectively. It can be seen that the shear stress signal
from ’flexible’ syringe system has considerable difference
compared to the optimal step function and thus, without any
compensation of this effect, the estimated cell parameters
might be significantly distorted.

The K-V model method using exponential fitting is based
on the assumption that the shear stress stimulation is a step
function. This assumption approximately holds for the ’rigid’
syringe; however, as we can see before, for the ’flexible’
syringe, this assumption does not hold, and it will lead to
the falsely increased value of the estimated viscosity η . This
situation might also occur if there is an air bubble inside the
syringe or tubing system or if the tubing itself is not rigid
enough.

The steady-state model considers only the steady values,
and therefore, if the time to achieve the steady-state is long
enough, it will not be influenced by the elasticity of the
flow system. Consequently, this model cannot be applied in
the case of fast stress changes together with a too elastic
flow system. Another disadvantage of this model is its
impossibility to estimate the viscosity parameter η .

Finally, the proposed parametric deconvolution method
works for various input shear stress signals. It predicts the
similar viscosity η for both rigid and flexible syringes due
to eliminating the influence of the syringe and tubing system
(see Fig. 3d).

As expected, the estimated shear modulus G is similar for
’rigid’ and ’flexible’ syringes for all methods (as can be seen
in Fig. 3c). For viscosity estimation, however, the K-V model
leads to highly distorted results – with a median viscosity
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Fig. 3. Achieved results and comparison of the influence of different syringe use and different estimation methods. The shear strain signals obtained as an
average form all measured cells (a) are shown. The blue signal comes from the ’rigid’ glass syringe and red signal comes from ’flexible’ plastic syringe.
Similarly, the average shear stress signals are shown in (b). The comparison of achieved estimated values of cell shear modulus (c) and cell viscosity (d)
using different flow systems and different models is shown. Blue dots – estimated values of different cells/cell clusters, box edges – 75th/25th percentil,
middle line – median value, whiskers – maximal/minimal value from 1.5 times of the inter-quartile range. Example of the shear strain signal fitting using
the parametric deconvolution model (e). Blue signal – measured shear strain signal, yellow signal – fitted polynomial model of centre of mass changes
caused by cell migration, red signal – estimated shear strain signal combining convolutional distortion modelling and cell migration modelling.

of 125.8 Pa · s for a rigid and 246.0 Pa · s for the flexible
syringe (an increase of 95%). However, the viscosity for the
deconvolution method incenses only slightly from 119.8 Pa ·s
to 129.2 Pa · s (8% increase). Results for both methods are
shown in Fig. 3d.

This result shows that the basic linear model for the sy-
ringe and tubing system can efficiently remove their influence
via parametric deconvolution. Furthermore, this approach is
not based on the necessity of the input step function, but
it might be applied for arbitrary shear stress waveforms.
Another advantage is the novel approach for the elimination
of the migration movement, which causes low-frequency
distortion of the measured CoM(t) signal. We showed that
the polynomial fitting of the remaining signal (∆t0,η ,G(t),
from eq. 9) can efficiently model and remove influence of
migration movement (see a yellow curve in Fig. 3e).

IV. CONCLUSIONS
We have compared three different methods for the estima-

tion of viscoelasticity parameters using QPI microscope and
flow-based shear stress application. The proposed parametric
deconvolution method, unlike the other two methods, is able
to robustly estimate both the shear modulus and viscosity.
Its robustness was tested on a setup with rigid and flexible
syringes, which highly influences the tubing system response,
where the estimated viscoelasticity was similar for both
setups. The whole setup is able to acquire the image and
flow data. The proposed image processing pipeline is able to
extract shear strain for individual cells, which can be used
for the estimation of cell viscoelasticity parameters.
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