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Abstract— We propose a novel method for deriving ground
truth labels for regression problems that considers the precision
of annotators separately for each label. This method ensures
that higher performing annotators contribute more to the final
landmark position which is in contrast to conventional methods
that assume all annotators are equally accurate in completing
the set task. In addition to describing the novel method, a set
of preliminary experimental results is also provided, comparing
the performance of the precision method to that of the global
mean.

Index Terms— annotation, ground truth, machine learning,
facial landmarking, variability, OSA, PAP

I. INTRODUCTION

There is a commonly known phrase in data analytics and
machine learning communities that effectively summarises
the need for high quality ground truth samples when train-
ing high performant machine learning models: ”rubbish in,
rubbish out”. If the quality of the training data is low one
would expect a similar quality of output from the model
itself. Conversely, with high quality input data, one can
construct simple, yet high performing models that can have
provide practical benefit in the physical world. Given the
critical nature of using high quality training data one must
consider what is required to procure such a dataset. While
the specifics of the collection process may vary with the
application at hand there is a general process that can be
followed. At the preliminary stages one must attempt to
understand the problem being solved and the relationship
between the desired outcomes and input data as much as
possible. This understanding can help to define the data
collection process as well as aspects of the dataset such
as the source and distribution of labels within the set. In
most situations the number of labels for each category will
be representative of the population being modelled, while
in others under or oversampling of specific labels may be
required. One must also provide due consideration to the
method by which the labels of the dataset will be generated,
as this process is almost exclusively completed manually we
must ask: Will each sample be annotated multiple times by
multiple annotators? Is special training required to complete
the annotation task? Do annotators require some minimum
qualifications to complete the task e.g. qualified medical pro-
fessionals such as radiologists or sleep medicine physicians?
How many labels per sample can the project afford? Is it even
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possible to develop canonical ground truth labels for any or
all data samples? To what extent will there be a degree of
uncertainty or disagreement amongst the annotators. It is this
question in particular that forms the basis of this study. How
can canonical ground truth labels be identified for training
datasets when there is uncertainty or disagreement amongst
the annotators?

We have frequently asked this question within our research
group as we have studied the application of modern machine
learning techniques to various aspects of the diagnosis [1]
and treatment of Obstructive Sleep Apnoea (OSA) [2], [3],
[4]. In these applications, high performing models have the
potential to directly and positively impact the overall health
and clinical outcomes for a patient; though the challenges
of producing high quality, ground truth data must first be
overcome. When considering models that are capable of as-
sisting in the diagnosis of sleep disordered breathing (SDB),
it must first be acknowledged that within the field of sleep
medicine the interpretation of sleep studies (the mechanism
by which a diagnosis of sleep disoredered breathing is
acheived) is subject to varying levels of agreement between
individual scores and facilities [5]. In order to determine a
canonical ground truth dataset that can be used in training a
supervised learning model, this variation between individual
scorers must be accounted for. In classification tasks such as
this (SDB positive / SDB negative) the foundational work
of Dawid and Skene provides the method of maximum
likelihood estimation to solve this problem [6], considering
the labels provided by and the error rates for each annotator
for each observation in assigning the final label.

Our studies have also considered the means by which
the treatment of OSA can be improved through the use of
machine learning models. the current gold standard for the
treatment of OSA is positive airway pressure (PAP) therapy,
which involves the application of a pneumatic splint to the
upper airway to prevent its collapse. A critical component of
this treatment is the mask worn by the patient. This piece of
equipment needs to ensure a sufficient seal can be formed
with the skin of the patient’s face as to maintain therapy,
while being comfortable enough to be worn for a complete
night’s sleep. A number of studies have identified that mask
issues are a common cause for patient’s to abandon their ther-
apy and thus not receive the health benefits associated with
its use [7], [8]. It is hypothesized that improved selection and
sizing of the allocated PAP masks can increase compliance
and adherence to PAP therapy. Our studies, centered around
the usage of frontal facial photographs to determine the
final mask selection for a patient, due to the simplicity and
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Fig. 1. Sizing Guide for a F&P Eson and Simplus PAP mask

potential telemedicine benefits for the patients. In order to
determine a patient’s mask size one requires the physical
measurement of nose width for nasal PAP masks and face
height for full face masks; this can be done using a pho-
tograph by identifying the location of the facial landmarks
of interest and using a scaling mechanism within the image.
Currently in clinical practice these measurements are applied
to a fitting guide as shown in Figure 1 to determine the final
size selection.

In a previous study we investigated the variability of 12
expert annotators in identifying the facial landmarks asso-
ciated sizing CPAP masks on images [9] and the potential
effect of this variability on the final mask size that could be
received by a patient. This study showed while employing
expert annotators the variance in landmark selection alone
could lead to errors in CPAP mask size estimates between 2.9
and 13.6%. When attempting to accommodate for this error
the location of the ground truth landmarks was identified
as a potential source for error. However as these labels are
not categorical the methods of Dawid and Skene could not
be applied to determine their final value. Inspired by the
Maximum Likelihood Estimation algorithm [6], in this study
we will present a method for identifying canonical ground
truth values for regression problems where the values for
the labels are provided as continuous variables, opposed to
categorical labels. By improving the quality of these selected
labels the error rates reported in [9] could be reduced or even
removed.

II. METHODS

While the method described in this section was developed
in the context of identifying ground truth labels for the
location of facial landmarks on frontal images, it can also be
applied to other regression problems when given continuous
values in one or more dimensions. This is also supported by

the fact that while the process of identifying facial landmarks
can be considered innate to human annotators and does not
require high levels of training or education, it can also be said
to be a problem for which a single agreed upon canonical
value cannot be obtained. The location of the landmarks
within the image(s) is a function of the annotator’s inter-
pretation of the landmark to be selected, their consistency in
selecting the same landmark more than once, as well as the
care taken in completing the task at hand. Currently, the most
common method for obtaining the single ground truth value
for each sample in a supervised learning dataset is to simply
take the mean value X across all observations for the label.
While being the simplest approach, this method assumes that
each landmark, selected by each annotator is of equal quality
and thus should contribute equally to the final label. In many
cases this is simply not the case; some annotators may take
more time and care during the process and thus may provide
more considered and consistent values, some landmarks may
be harder to identify leading to high degrees of uncertainty
amongst the annotators while (particularly in the case of
crowd sourced labels) may simply be adversarial, actively
providing low quality labels.

A. Description of Algorithm

The method proposed in this study, similar to Dawid
and Skene provides an interative process that considers the
precision of each annotator in the selection process and
contributes an amount to the final value according to each
annotator’s own performance. Say we have a total of A
annotators, each providing R replicate values for a single
label in D dimensions. The process starts by first seeding
the estimate of the ground truth location for a label using
the global mean X.

X =
1

RA
ΣX (1)

δ(a) =

√
(XRD(a)−X)2 (2)

p(a) =
1

1
RΣδ(a)

(3)

w(a) =
1

P
p(a) (4)

xj =
1

AR
ΣA

a=0w(a)X(a) (5)

(6)

Where:
• X ∈ <ARD are all selections made across all

annotators and replicates for a single label,
• XRD(a) ∈ <RD are all the selections by annota-

tor a in D dimensions,
• p(a) ∈ <D is the precision of annotator a and P

is the sum of all values of p(a),
• w(a) is the weight assigned to annotator a,
• xj is the estimate of the ground truth location at

iteration j
The euclidean distance δ(a) of each replicate by each

annotator from the current ground truth location xj is then
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Data: Manually annotated labels for a single data
sample X ∈ <ARD. A maximum number of
iterations M and an acceptable tolerance of
deviation T .

Result: Ground truth labels XG ∈ <D

while A > 1 do
Initialise the current ground truth estimate
x0 = X;

for j : 0→M - 1 do
Compute each annotator’s precision p(a);
Compute each annotator’s weights w(a);
Compute the annotator weighted average

ground truth estimate xj+1;
if min(xj+1 − xj) < T then

break;
end

end
Sum the precision of each annotator in all

dimensions pt(a) = ΣD
d=0pd(a);

Remove the annotator with the lowest cumulative
precision pt from the dataset, such that
A 7→ A− 1.

end
Algorithm 1: Ground truth label derivation for a single
label

computed and used to determine a single precision value
p(a) for each annotator as per Equation 3. The precision
value is then used to determine the contribution of each
annotator w(a) (see Equation 4) to the ground truth value.
This ensures that higher performing annotators contribute
more to the final value, while the input of less precise
annotators is not completely ignored. The annotator weights
are then used to update the ground truth estimate xj+1 (see
Equation 5) by computing a new weighted average. This
process is repeated until the estimate of the ground truth
location stops moving more than some tolerance value T .
Finally the least precise annotator and their corresponding
labels is removed from the data set and this process is
repeated until one annotator remains in the set. If there are N
labels to be annotated for a single data sample this process
will be repeated independently for each sample in the set.
The process is summarised in the pseudocode of Algorithm
1 and a Python implementation can be found at https://
github.com/doc-E-brown/johnstondechazal.

B. Experimental Facial Landmark Localisation

To determine the efficacy of the proposed method, we
completed an experimental study where we asked Nexpert =
12 expert and Ncrowd = 100 crowd sourced annotators
to identify a subset of the MULTI-PIE/IBUG configuration
as shown in Figure 2 on I = 2 different images using
Amazon Mechanical Turk . The images were selected from
the 300W [10] and AFLW [11] datasets due to the variety
in poses, expressions, lighting and environments. To avoid
any confusion or unintended bias in landmark idenification

Fig. 2. The landmarks shown by the red asterix were not used but are part of
the original 68 MULTI-PIE/IBUG configuration. The landmarks in green are
from the MULTI-PIE/IBUG configuration and were included in the study,
while the landmarks denoted by the blue circle were also included but are
not part of the dataset.

(a) P9 (b) P47 (c) P17

Fig. 3. Example landmark location images.

process, an example image (see Figure 3) of the landmark to
be identified was provided to the annotator, and the order in
which the landmarks or images was completely randomised.
For more information regarding the data collection process
the reader is referred to the Methods section of [2]. Using
this data the method described in Algorithm 1 was applied
and the final location of the derived ground truth labels were
compared to the global mean.

III. RESULTS

Figures 4 and 5 show the preliminary results of the
applying Algorithm 1 to the manually annotated landmarks.
The green crosses on each image indicate the position of
the mean of all labels made for each landmark, while the
red crosses indicate the final position as determined by the
method proposed in this study.

IV. DISCUSSION

Referring to both Figures 4 and 5 and the position of
landmarks 17, there is a significant difference in the position
of the global mean and the final locations. The trajectory
of these landmarks over the iterative process shows the
movement towards the border of the face as well as positions
closer to the outline of the ear. In both images this represents
an improvement in the final position, as the landmarks are
no longer positioned on the forehead and are closer to the
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Fig. 4. Annotated Image 1, sourced from [11]. The green crosses mark the
initial mean, the red crosses the final location.

Fig. 5. Annotated Image 2, sourced from [10]. The green crosses mark the
initial mean, the red crosses the final location.

designated location indicated by Figure 3c. Other locations
of interest include the position of the landmarks designated
as P9 and P47 as per Figure 2. Landmark P9 is intended
to be identified as the apex of the chin, on the border line
of the face. In both result images it can be seen that the
final position is closer to the face boundary when compared
with the corresponding mean value. The position of landmark
P47 also lies closer to the boundary of the eyelid when
compared to the starting position. For landmarks where there
is a known locating feature, such as the corner of the eyes,
the centre of the pupils and corner of the mouth there is

little difference between the initially seeded values and the
final locations as determined by Algorithm 1. This can be
attributed to the fact that the locating nature of the locations
leads to less uncertainty amongst the labellers [2]. These
results are being reported as preliminary as there is further
analysis that is currently being completed, including the
effect of modifications to the method itself. As reported in
this study, Algorithm 1 eliminates annotators until there is
only one remaining in the set. Alternatives to be explored
include adjusting the number of annotators in the final pool
as well as experimenting with different methods for seeding
the process.

V. CONCLUSION

In conclusion we propose a novel method for determining
the final ground truth label from manually annotated datasets
for use in supervised regression problems. This method
considers the precision of each annotator separately for each
label to ensure the most precise annotators contibute the
most to the final value. In this study we presented the initial
experimental results using this method on a large sample of
annotated data.
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