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Abstract— Neural network has been found an increasingly
wide utilization in all fields. Owing to the fact that the tra-
ditional optimized algorithm, Iterative Shrinkage-Thresholding
Algorithm (ISTA) or Alternating Direction Method of Multi-
pliers (ADMM), could be presented by a form of network, and
it could overcome some shortcomings of traditional algorithms,
which inspired us to introduce the structured deep network
into PET timing calibration. In this paper, by reformulating an
ADMM algorithm to a deep network, we introduce a ADMM-
Net framework for calibration, which combines the advantage
of compatibility of consistency condition method. To verify the
performance, several experiments of Monte Carlo simulation
in GATE are performed.

I. INTRODUCTION

Positron Emission Tomography (PET) owns the ability to
pair two 511 keV photons in a narrow time window, which
indicates the importance of accurate timing information.
The width of the window is determined by the longest
useful line-of-response (LOR) and the speed of light plus
the system’s coincidence timing resolution. The timing cali-
bration methods could be categorized as direct and indirect
methods. The typical approach of direct calibration is to use
a time reference probe. [1], [2]. While the indirect methods
for calibration are diversity, some methods are based on
iterative optimization in block level [3], or in crystal level [4].
Partial calibration is worked by measuring a known activity
distribution such like a point source [1], a rotating line
source[5], or a shell [6]. Werner, et al. presented that the scan
data of patients or phantoms could be used for calibration
[7]. Defrise proposed a new data driven approach in 2D
time-of-flight (TOF) PET for calibration, which was derived
from the consistency equation [8]. On the basis of that, Li
extended this method for 3D TOF PET [9]. Some methods
make use of the framework of linear formulation to calculate
the offset, the linear system matrix can be established by
numbers of LORs. The methods calculated offset by solving
linear least squares [10], [11], or added the regularization by
penalized least squares estimation [12], [13]. Alternatively,
the linear system matrix built by numbers of coincidence
events, Reynolds formulated the maximum-likelihood prob-
lem amounts to solve the timing calibration problem [14].
Following Reynolds’ framework, Freese proposed that the
LSQR [15] or LSMR [16] algorithm to accelerate calculation
because of the sparsity nature of system matrix, and they
applied l1 minimization instead of least squares estimation
to improve the robustness to outliers [17]. For other purpose,
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there is some method that makes use of regularization to
calculate constant offset [18].

Recently, deep neural network has been an effective tool.
The traditional algorithms are presented by the form of
network [19], [20], and this framework could overcome
some shortcomings of traditional methods in calibration,
such as long acquisition time, long computation time and
other problems.

In this paper, we introduce the ADMM-Net by refor-
mulating an Alternating Direction Method of Multipliers
(ADMM) algorithm into network frame for calibration. For
improving compatibility, the label of network is using the
result of the data driven method derived from the consistency
condition. And the deep network framework combines the
advantages of ADMM algorithm and the compatibility of
data consistency. To assess the performance of proposed
method, several experiments are performed by Monte Carlo
simulations in GATE.

II. METHOD

A. Linear formulation

Considering that there is a list m of coincidence events
data stream, we frame the delay problem as a least squares
problem, also referred to as l2-norm minimization. The
problem then could be stated as:

minimize ‖Ax− b‖22 (1)

where A is system matrix, x is offset vector, and b is
measured time difference vector. System matrix A is a m×
n matrix, m is the number of coincidence events, n is the
number of detector units. Each row of A has a 1 and -1, and
other place is 0, the position of 1 and -1 presented the index
of crystal unit, and -1 indicates that it is subtracted from the
time of index of 1 crystal unit. Then the corresponding to
the row of b is the time difference corresponding to the row
of A. A simple example modeling matrix A for a system
with four crystal elements and three coincidence events is
presented in Eqn.(2).

‖Ax− b‖22 =

∥∥∥∥∥∥∥
 1 0 −1 0

0 1 −1 0
1 0 0 −1


 x1
x2
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x4

−
 b1
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b3


∥∥∥∥∥∥∥
2

2
(2)

As mentioned above, A is a sparse matrix, the calibration
process could be accelerated by LSQR algorithm. Yet, com-
pared with the l2-norm, the l1-norm could obtain a more
accurate estimation. Several techniques could potentially
improve the stability in presence of noise, such as replace the
least squares estimation by l1 minimization [17], or add l1
constraint to equation [12]. Both of these problem could be
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solved by the ADMM algorithm [21], [22]. In this paper, we
select adding l1 regularized loss minimization in to Eqn.(2),
and the loss function multiply the 1/2. Then the problem is
redefined as an optimization problem as follows:

minimize (1/2)‖Ax− b‖22 + λ‖x‖1 (3)

this form is l1 regularized linear regression, also called the
lasso [23]. In ADMM form, the lasso problem can be written
as

minimize f(x) + g(z)

subject to x− z = 0
(4)

where f(x) = (1/2)‖Ax − b‖22 and g(z) = λ‖z‖1, and
according to the [21], the problem can be written:

xk+1 :=
(
ATA+ ρI

)−1 (
AT b+ ρ

(
zk − uk

))
zk+1 := Sλ/ρ

(
xk+1 + uk

)
uk+1 := uk + xk+1 − zk+1

(5)

where the I is the identity matrix, ρ is the augmented
Lagrangian parameter, uk is defined as the running sum of
residuals. And soft thresholding operator S is defined as

Sκ(a) =

 a− κ a > κ
0 |a| ≤ κ
a+ κ a < −κ

(6)

B. Consistency condition

We follow the Defrise’ the notation and the discretization
process of their work [8], then calculate the offset, since this
method could be applied to data measured with an arbitrary
tracer distribution, which improves the compatibility in dif-
ferent situation.

Assuming that the circular ring scanner of radius R with
2N equally spaced detectors, and the measured data as
mj,k,it with TOF sampling ∆t:

αj = jπ/N j = 0, . . . , 2N − 1

βj,k = αj + π + kπ/N − kmax 6 k 6 kmax

t = it∆t it = −im, . . . , im
(7)

where α, β is the angular coordinates of the two detectors
in coincidence, j is the index number of detector, βj,k is
the fan of detectors in coincidence with αj , k = −N +
(j2 − j1) %(2N) is the fan index of (j1,j2).

The two parameters, data moments M0,j,k =
∑
it
mj,k,it

and M1,j,k = ∆t

∑
it
itmj,k,it , are related to 2N × 2N

maxtrix U and vector Y :

Uj1,j2 = Tj1δj1,j2 −∆j2M0,j1,k (8)

Yj1 =

kmax∑
k=−kmax

∆j2

(
M1,j1,k +R

∣∣∣∣sin(π(N + k)

2N

)∣∣∣∣M0,j1,k

)
(9)

where δ is the Kronecker delta, the diagonal term is Tj1 =∑
k

∆j2M0,j1,k, and the ∆j is weight of detector j at αj .

To avoid indeterminacy, they added a diagonal matrix
µλmaxI to U in their work, with I is the identity matrix, µ
is the trade off parameter and λmax the largest eigenvalue of

U . Then we solve the linear equation (U + µλmaxI) ·x = Y
for x by gaussian elimination. The calculated x is regarded
as the label for network.

C. ADMM-Net

By taking full advantage of the merits of ADMM based
methods, the basic idea of ADMM-Net is to map the previous
ADMM update steps to a deep network architecture. In
Yan’ work, they extent and generalize iteration in Eqn.(5),
they generalize four types of operations to have learnable
parameter as network layers. These operations are gener-
alized as reconstruction layer, convolution layer, non-linear
transform layer, and multiplier update layer. In this paper,
the convolution layer is not necessary, so we eliminate the
convolution layer, remaining the rest three layer in our work.

Reconstruction layer (X(n)): This layer is following the
reconstruction operation in Eqn.(5). Given z(n−1) and β(n−1)

which are outputs of previous layers in stage n−1, the output
of this layer is defined as:

x(n) =
(
ATA+ ρ(n)I

)−1 [
AT b+ ρ(n)

(
z(n−1) − β(n−1)

)]
(10)

where b is the input measurements and ρ(n) is learn-
able penalty parameter in nth stage. In the first stage,
z(0) and β(0) are initialized to zeros, so the x(1) =(
ATA+ ρ(1)I

)−1 (
AT b

)
.

Nonlinear transform layer (Z(n)): This layer performs
nonlinear transform inspired by the shrinkage function S(·)
defined in Z(n) in Eqn.(5). Instead of setting it to be a fixed
function determined by the regularization term, we learn a
more general function by using a piecewise linear function.
Given x(n) and β(n−1), the output of this layer is defined as:

z
(n)
l = SPLF

(
x(n) + β

(n−1)
l ;

{
pi, q

(n)
l,i

}Nc

i=1

)
(11)

where SPLF (·) is a piecewise linear function determined by

control points
{
pi, q

(n)
l,i

}Nc

i=1
.

SPLF (a) =


a+ q

(n)
l,1 − p1, a < p1

a+ q
(n)
l,Nc
− pNc

, a > pNc

q
(n)
l,r +

(a−pr)
(
q
(n)
l,r+1−q

(n)
l,r

)
p2−p1 , p1 ≤ a ≤ pNc

(12)
Multiplier update layer (M(n)): This layer is defined

by the Lagrangian multiplier updating procedure M(n) in
Eqn.(5). The output of this layer in stage n is defined as:

β
(n)
l = β

(n−1)
l + η

(n)
l

(
x(n) − z(n)l

)
(13)

where η are learnable parameters.

D. Gradient Computation by Backpropagation

The parameters of ADMM-Net are optimized by the
gradient-based algorithm L-BFGS [24]. In the forward
pass,the data procession of n th stage is in the order of
X(n), Z(n), M(n). In the backward pass, the gradients are
computed in an inverse order.
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Fig. 1. Illustration of ADMM-Net. There are three types of nodes in n-th stage: reconstruction layer (X), nonlinear transform layer (Z) and multiplier
update layer (M) .

III. EXPERIMENT

A. Experiment parameter set

We perform the Monte Carlo simulation in GATE to eval-
uate the effectiveness of proposed method. A hypothetical
430 mm diameter system with 32 modules, each module
comprised 16×16 crystals array with 30 mm length and 2.4
mm pitch. The transaxial FOV is 330 mm, and axial FOV
is 40 mm. The total crystal number is 8192 and material is
LYSO. Since Defrise’ work focus on the transaxial direction,
thus in this paper, the number of detector unit is 512
rather than 8192. Temporal resolution is introduced into the
system, which is a parameter of Gaussian blurring in the
time domain. Background noise is also introduced, which
the energy distribution is following a Gaussian distribution,
and time distribution is following a Possion process. The
simulated offsets were generated for the system, as the sum
of two terms. The first term is generated as a uniform random
number over the interval (-33.3, +33.3) ps as the floating
offset for each crystal detector unit, and the second term is
also generated as a uniform random number over interval
(-33.3, +33.3) ps as the constant offset for each block array.
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Fig. 2. The simulated offset xj (unit: ps) for 512 detector unit

We perform three simulation experiments: point source
experiment, cylinder source experiment, and hoffman phan-
tom experiment. In point source experiment, 0.1 mm radius
sphere point (1 Mbq 18F ) was placed at the center FOV,
nearly one million coincidence events were used for cali-
bration. For cylinder source experiment, a radius 0.5 mm,
height 100 mm, line source (1 Mbq 18F ) is set. For the

hoffman phantom experiment, the parameter is set as same
as benchmark voxelized source in GATE. The scanning time
in all experiments is 100s.

B. Result
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Fig. 3. The offsets calculated by method of consistency condition, the
horizontal axial is detector index j, and vertical axis is fan index k

Table.I lists the parameters and results of experiments. In
the point source, the effect of proposed method would be
slightly inferior to traditional LSQR or Lasso, the FWHM
is 328.54 ps and the FWHM of LSQR is 325.95 ps. While
the distribution of source is more complex, the performance
of proposed method is gradually emerging. In the situation
of cylinder experiment, the index of FWHM of proposed
method is nearly the traditional method, and in the phantom
experiment, the performance of proposed method is better.
Owing to that the label of network is based on the result
of consistency condition method, the universality of method
will be extended.

C. Other index

In this experiment, the label of network is using result
of LSQR instead of result of consistency condition method.
We found that the proposed method could obtain a relatively
good result with slightly inferior comparing with result of
traditional algorithm in long acquisition time. The result
of experiment is list in Table.II. In some case, there is a
need for some situation that the label of network is result of
Lasso, then the computation time of proposed method will be
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TABLE I
SIMULATION EXPERIMENT

Point source experiment
Temporal Expect Noisy-data Noise(Poisson) Coin
resolution resolution resolution (Exponetial) Window
200ps 323.12ps 346.07 2mus 2ns
Index \ Method LSQR Lasso Consistency ADMM-Net
FWHM(ps) 325.0709 325.9589 328.5403 327.9443

Cylinder source experiment
Temporal Expect Noisy-data Noise(Poisson) Coin
resolution resolution resolution (Exponetial) Window
200ps 946.2343ps 948.5801 2mus 2ns
Index \ Method LSQR Lasso Consistency ADMM-Net
FWHM(ps) 946.5363 946.5208 946.6387 946.58

Hoffman phantom experiment
Temporal Expect Noisy-data Noise(Poisson) Coin
resolution resolution resolution (Exponetial) Window
200ps 700.167ps 705.1116ps 2mus 2ns
Index \ Method LSQR Lasso Consistency ADMM-Net
FWHM(ps) 701.9131 701.8642 701.6629 701.6796

faster than traditional Lasso algorithm or other l1 optimized
method.

TABLE II
POINT EXPERIMENT WITH PARTIAL DATASET

Partial dataset for calibration
data percent 100% 50% 33% 20%
Index \ Method LSQR LSQR LSQR LSQR
FWHM(ps) 325.0709 325.1301 326.2431 326.4732
data percent 10% 5% 1% 1%
Index \ Method LSQR LSQR LSQR ADMM-Net
FWHM(ps) 327.8715 328.6345 333.2029 325.0841

IV. COMPLIANCE WITH ETHICAL STANDARDS

The experimental procedures involving human subjects
described in this paper were approved by the Institutional
Review Board.

V. CONCLUSION

We proposed a end-to-end ADMM-Net deep network
for timing calibration in PET. The method combines the
advantage of consistency condition method and traditional
ADMM optimization. In future work, we would explore the
more details in the architecture of network in which will
have impact on the performance of method.
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