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ABSTRACT 
 
The most common pipelines for studying time-varying 
network connectivity in resting state functional magnetic 
resonance imaging (rs-fMRI) operate at the whole brain level, 
capturing a small discrete set of “states” that best represent 
time-resolved joint measures of connectivity over all network 
pairs in the brain. This whole-brain hidden Markov model 
(HMM) approach “uniformizes” the dynamics over what is 
typically more than 1000 pairs of networks, forcing each 
time-resolved high-dimensional observation into its best-
matched high-dimensional state. While straightforward and 
convenient, this HMM simplification obscures functional and 
temporal nonstationarities that could reveal systematic, 
informative features of resting state brain dynamics at a more 
granular scale. We introduce a framework for studying 
functionally localized dynamics that intrinsically embeds 
them within a whole-brain HMM frame of reference. The 
approach is validated in a large rs-fMRI schizophrenia study 
where it identifies group differences in localized patterns of 
entropy and dynamics that help explain consistently observed 
differences between schizophrenia patients and controls in 
occupancy of whole-brain dFNC states more mechanistically. 
 

Index Terms— Functional Magnetic Resonance 
Imaging, Functional Network Connectivity, Dynamic 
Functional Network Connectivity, Schizophrenia 
 

1. INTRODUCTION 

Brain network connectivity in resting-state functional 
magnetic resonance imaging (rs-fMRI) was, until recently, 
studied primarily as a stationary property assessed over the 
full duration of the scan. Working with time-varying 
measures of resting state connectivity, so-called dynamic 
functional network connectivity (dFNC) has gained traction in 
recent years, with much of this work based on a pipeline 
introduced in [1]. The key features of this approach are that it 
uses functional networks spanning the whole brain, estimates 
time-varying connectivity between the networks using 
correlations computed on sliding windows through the 
network timeseries and then clusters the resulting collection 
of high-dimensional observations into states (cluster 
centroids) that represent replicable, transiently realized 
whole-brain connectivity patterns. The number of unique 
networks pairs typically exceeds one thousand, while the 
optimal number of clusters according to standard criteria (e.g., 
elbow, silhouette) is typically less than eight. Standard 
measures of interest are the  

 

occupancy rate (OCR) and mean dwell time (MDT) of the 
cluster states. Transition probabilities between cluster states 
are also studied [2]. Given the prevalence of this general 
approach, addressing some of its limitations within its own 
terms, i.e., in a methodological ecosystem still framed by 
whole-brain HMM allows deeper information to emerge in a 
way that remains commensurable with earlier published 
studies. While the HMM simplification has several important 
limitations as a model for rs-fMRI, our focus here is on better 
resolving functionally localized features of the dynamic 
whole-brain connectome. We introduce a method that 
captures more granular, mechanistic processes of integrative 
and dissipative functional cohesion that undoubtedly drive 
much of the high-level dynamics observed with whole-brain 
HMM analysis. Moreover, we find that at this more granular 
level, the properties characteristic of schizophrenia patients 
also characterizes timepoints preceding transitions into 
whole-brain HMM states more occupied by patients, 
suggesting a lower-level mechanistic explanation for elevated 
SZ occupancies of these target HMM states. 

2. METHODS 
2.1 Data 

We use data from a large, eyes-open resting-state fMRI study 
with approximately equal numbers of schizophrenia patients 
(SZs) and healthy controls (HCs) (𝑛𝑛=311, nSZ=150). Imaging 
data for six of the seven sites was collected on a 3T Siemens 
Tim Trio System and on a 3T General Electric Discovery 
MR750 scanner at one site. The data was preprocessed with a 
standard, already published [2], pipeline and decomposed 
with group independent component analysis (GICA) into 100 
group-level functional network spatial maps (SMs) and 
corresponding subject-specific timecourses (TCs). Through a 
combination of automated and manual pruning, 𝑁𝑁=47 
functionally identifiable networks are retained. Subject 
specific spatial maps and timecourses were obtained from the 
group level spatial maps via spatio-temporal regression. The 
timecourses were detrended, despiked and subjected to some 
additional postprocessing steps. The networks obtained fall 
into 7 functional domains: subcortical (SC, 5 nodes), auditory 
(AUD, 2 nodes), visual (VIS, 11 nodes), sensorimotor (SM, 6 
nodes), cognitive control (CC, 13 nodes), default mode 
(DMN, 8 nodes) and cerebellar (CB, 2 nodes). Functional 
domains are displayed along axes of connectivity matrices in 
the order given above. All subjects signed informed consent 
forms.  

2.2 Dynamic Functional Network Connectivity 
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Dynamic functional connectivity (dFNC) between RSN 
timecourses was estimated using sliding window correlations. 
Following protocols from recent studies [2], dynamic 
functional network connectivity (dFNC) was estimated using 
pairwise correlations between RSN timecourses on tapered 
sliding rectangular windows of length 22 TRs (44 seconds), 
advancing 1 TR at each step [2]. After dropping the first 3 
TRs, this procedure yields a 47(47 − 1) 2⁄ = 1081-
dimensional dFNC measure on each of 136 windows of 
length 22TRs for each subject. Using Matlab’s 
implementation of k-means, the resulting observations are 
placed into 5 clusters (elbow criterion, squared Euclidean 
metric, 2000 iterations, 500 replicates). 

2.3 Elementwise Discrete Recoding of dFNCs 

In addition to the cluster membership of each 1081-
dimensional observation determined by k-means, we identify 
each element (or cell) of the dFNC observation with one of 
the five whole-brain clusters based on its 𝐿𝐿2 distance from the 

corresponding cell of each cluster centroid, 𝒞𝒞𝑗𝑗 = �𝑐𝑐𝑗𝑗,𝑖𝑖�𝑖𝑖=1
1081

, 
𝑗𝑗 = 1,2, . . ,5. Specifically, we apply a transformation 
𝑓𝑓: [−1,1] → 𝒜𝒜 from the closed unit interval into the alphabet 
𝒜𝒜 = {1,2,3,4,5} to each element 𝜈𝜈𝑖𝑖(𝑡𝑡) ∈ [−1,1] of the 
observed dFNC matrix at time 𝑡𝑡, such that 𝑓𝑓�𝜈𝜈𝑖𝑖(𝑡𝑡)� = 𝛼𝛼𝑖𝑖(𝑡𝑡) ∈
𝒜𝒜, where 𝛼𝛼𝑖𝑖(𝑡𝑡) = {𝑘𝑘 ∈ 𝒜𝒜: 𝑘𝑘 = min

𝑗𝑗
�𝜈𝜈𝑖𝑖(𝑡𝑡) − 𝑐𝑐𝑗𝑗,𝑖𝑖�2} is the 

index of the whole-brain cluster whose corresponding 
element is closest to 𝜈𝜈𝑖𝑖(𝑡𝑡). (𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅𝐅 𝟏𝟏). The whole-brain 
observation can then be considered either as belonging to its 
originally assigned cluster, or to the cluster to which the 
largest percentage of its elements are assigned (Figure 1). 
More importantly, this transformation allows domain blocks 
within the whole-brain connectome to be assigned a cluster in 
the same way, e.g., the CC-DMN block at time 𝑡𝑡 belongs to 
the cluster that the largest percentage of its elements are 

assigned to (Figure 1). The cellwise re-coded, 𝒜𝒜-valued, 
dFNCs are referred to as CCdFNCs. 
 
2.4 Time-Resolved and Dynamic Blockwise Entropy   

Consisting of values from a finite alphabet, CCdFNCs offer a 
straightforward way to examine functional entropy across the 
whole connectome and localized to specific domain blocks 
(Figure 2). As a metric of the relative strength of integrative 
functional cohesion versus dissipative disorder, we compute 
the empirically observed entropy of the whole brain at time 𝑡𝑡 
as ℰ(𝑡𝑡) = −∑ 𝑝𝑝𝑘𝑘(𝑡𝑡) log 𝑝𝑝𝑘𝑘(𝑡𝑡)5

𝑘𝑘=1  where 𝑝𝑝𝑘𝑘 =
|{𝛼𝛼𝑖𝑖(𝑡𝑡) ∈ CCdFNC(𝑡𝑡):𝛼𝛼𝑖𝑖(𝑡𝑡) = 𝑘𝑘}| |CCdFNC|⁄ . Similarly, on 
the domain block level, the functionally localized time-
resolved entropy (trEnt) in block 𝐵𝐵 ∈ CCdFNC  at time 𝑡𝑡 is  
ℰ𝐵𝐵(𝑡𝑡) = −∑ 𝑝𝑝𝑘𝑘𝐵𝐵(𝑡𝑡) log 𝑝𝑝𝑘𝑘𝐵𝐵(𝑡𝑡)5

𝑘𝑘=1  where 𝑝𝑝𝑘𝑘𝐵𝐵 =
|{𝛼𝛼𝑖𝑖(𝑡𝑡) ∈ 𝐵𝐵(𝑡𝑡):𝛼𝛼𝑖𝑖(𝑡𝑡) = 𝑘𝑘}| |B|⁄ . In the two degenerate 
blocks (AUD-AUD and CB-CB) with just one cell, ℰ𝐵𝐵(𝑡𝑡) ≡
0. The AUD-CB block contains only 4 elements and thus 
cannot achieve the maximum possible entropy (− log(0.2) ≈
1.61) on the five-letter alphabet 𝒜𝒜. They are included only 
for completeness and to maintain the structural shape of the 
connectome. 

To better resolve how integration and disorder evolve on short 
timescales, we also consider the 𝑡𝑡 to 𝑡𝑡 + 1  dynamic entropy 
(dynEnt) on whole-brain and blockwise levels. In this case, 

the set of outcomes are the set of ordered pairs (𝑘𝑘, 𝑘𝑘′) ∈
𝒜𝒜 × 𝒜𝒜. The hypothetical case where 𝑘𝑘′ = 𝑘𝑘 for all cells is 
the outcome in which none of the measured entropy is 
dynamic. Thus, we estimate the dynamic entropy on 𝐵𝐵(𝑡𝑡) or 
CCdFNC(𝑡𝑡) as ℰΔ∗(𝑡𝑡, 𝑡𝑡 + 1) = −∑ 𝑝𝑝𝑘𝑘,𝑘𝑘′

∗ (𝑡𝑡, 𝑡𝑡 +5
𝑘𝑘,𝑘𝑘′=1

1) log 𝑝𝑝𝑘𝑘,𝑘𝑘′
∗ (𝑡𝑡, 𝑡𝑡 + 1) − ℰ̃∗ where ℰ̃∗ = −∑ 𝑝𝑝𝑘𝑘,𝑘𝑘

∗ (𝑡𝑡, 𝑡𝑡 +5
𝑘𝑘,𝑘𝑘=1

1) log 𝑝𝑝𝑘𝑘,𝑘𝑘
∗ (𝑡𝑡, 𝑡𝑡 + 1).  

 

2.5 Statistical Modeling 

Figure 1 Schematic for cellwise recoding of dFNCs; (Top Left) Each cell of 
the observation is coded with the index of the whole-brain cluster to which 
the corresponding cell in the cluster centroid the observed value is closest to; 
(Top Right) This induces a fuzzy clustering of the dFNC based on the 
percentage of cells assigned to each whole-brain cluster; (Bottom) Domain 
blocks within the recoded dFNC are assigned cluster membership according 
to the percentage of cells in that block which are closest to the corresponding 
cell in each whole-brain cluster. Figure 2 Whole brain (top left) and blockwise (top right) functional entropy 

is computed with respect to the observed probabilities of each value from the 
alphabet 𝒜𝒜 = {1,2,3,4,5} occurring in whole CCdFNC or in the block 𝐵𝐵 
under consideration. Dynamic entropy (bottom) is computed with respect to 
observed probabilities of ordered pairs (𝑖𝑖, 𝑗𝑗) from 𝒜𝒜 × 𝒜𝒜 occurring at 
consecutive timepoints 𝑡𝑡, 𝑡𝑡 + 1 corrected for the entropy that would be 
observed if no cell changed assignment between 𝑡𝑡 and 𝑡𝑡 + 1. 
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Reported SZ effects are from a multiple regression on gender, 
age, head motion and diagnosis. The effect of a condition 
applicable only to a subset of observations, e.g. observations 
at times {𝑡𝑡: dFNC(𝑡𝑡) is in whole brain cluster 𝑘𝑘}, on some 
measure 𝑚𝑚 are estimated with t-tests of the measure 𝑚𝑚 taken 
under the condition of interest with respect to 𝑚𝑚� , the global 
mean of the same measure. Results are only reported when 
significant at the 𝑝𝑝 < 0.05 level after correction for multiple 
comparisons. 

3. RESULTS 

Using the discrete cellwise recoding of dFNC observations, 
we obtain insights into both global and functionally localized 
patterns of functional integrative and dissipative tendencies, 
and connections between these tendencies and diagnosed 
schizophrenia.  

One important finding is that, not surprisingly, the auditory-
visual-sensorimotor (AVSM) block – a very high magnitude, 
positively connected set of networks – drives whole-brain 
clustering to a significant degree. In particular, the visual 
block (Figure 4, left) is much more likely to belong to the 
cluster that k-means initially assigned the ambient whole-
brain dFNC to. Other blocks have odds not far from chance 
(0.2) of being assigned to the “correct” cluster. This suggests 
that more sophisticated clustering strategies might be 
warranted for whole-brain analysis. The directional 
tendencies toward correct domain block assignment are 
amplified in the patient population (Figure 4, right). Which is 
to say that the whole-brain clusters are even less accurate 
descriptions of non-AVSM domains for SZs than for HCs.  

We also find both whole-brain time-resolved entropy (𝛽𝛽𝑆𝑆𝑆𝑆 =
0.013, 𝑝𝑝𝑆𝑆𝑆𝑆 = 2.5e−08) and whole-brain dynamic entropy 
(𝛽𝛽𝑆𝑆𝑆𝑆 = 0.018, 𝑝𝑝𝑆𝑆𝑆𝑆 = 5.9e−04) significantly elevated in SZs. 
Functionally localized time-resolved and dynamic entropy 
averages are highly correlated with each other; in both cases 
heightened in blocks involving cognitive control (Figure 3), 
and some blocks of DMN and VIS; relatively lower, among 

intra-domain blocks, in SC-SC, VIS-VIS and SM-SM. The 
latter two are blocks that tend to remain consistently strongly 
cohesive and intercorrelated, making them important to 
determining cluster membership (Figure 4), but evidently not 
loci of functional reorganization that requires periods of 
disorder. In the case of dynEnt, DMN-DMN is also among the 
lower intra-domain blocks (Figure 3), indicating that while 
the DMN is not highly functionally integrated, the disorder is 
static or gradually manifesting on timescales longer than Δ𝑡𝑡 =
1. As in the case of local-global cluster matching (Figure 4), 
the SZ effects on blockwise trEnt and dynEnt (Figure 3) 
directionally accentuate the tendencies in the population 

averages: SZ has significant negative effects on VIS-VIS 
time-resolved and dynamic entropy; significant positive 
effects on VIS-to-other and SC-to-other time-resolved and 
dynamic entropy. SZ appears to be pushing the general trends 
toward either order or disorder to greater extremes. 

Another question is whether time-resolved and/or dynamic 
entropy are different, on functionally localized terms, 
immediately preceding a whole-brain transition between 
global clusters (Figure 5). In the case of blockwise trEnt the 
answer is yes, and the specific domain blocks that gain or lose 
integrative cohesion depend heavily on the source and 
destination global state (Figure 5). Focusing on Markov 
loops, i.e., the self-to-self transitions associated with periods 
dwelling in a fixed global state, we see that the disconnected 

Figure 4 (Left) Domain blocks are assigned membership to the global cluster 
to which the largest percentage of their individual cells are most proximal. 
The averaging effect of whole-brain dFNC clustering means that the 
elementwise match within domain blocks can be close to chance (0.2), with 
highest local-global match (0.32) in the strongly intercorrelated AUD-VIS-
SM (ASVM) block, suggesting thi block is very influential in whole-brain 
dFNC cluster-based analyses; (Right) non-AVSM blocks are even more 
poorly matched to global cluster in SZs; AVSM  better matched. 

Figure 3 (Top) Time resolved blockwise entopy; (left) CC-SC, CC-VIS, CC-
DMN all notably elevated; (right) SZ further suppresses VIS-VIS entropy and 
elevates VIS-to-other entropy; (Bottom) Dynamic blockwise entropy; 
population average (left) and SZ effects (right) follow patterns similar to 
those of trEnt; population averaged DMN-DMN has relatively lower dynEnt 
than trEnt and SZ effects on DMN-SM dynEnt are relatively stronger. 
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global state (#5) “tolerates” the highest amount of within-state 
functional disorder, while staying within either of the highly 
modularized AVSM-dominant global states (#2 and #4) 
seems more delicate, requiring less disorder/ more integrative 
cohesion. Not surprisingly,  blockwise dynEnt (Figure 5) is 

notably depressed when remaining in a fixed global state, 
with the exception of weakly connected global state 5 in 
which in which occupancy can persist with significantly 
elevated dynEnt in VIS-to-other domain blocks (Figure 5).  

4. DISCUSSION 
We introduced here a framework for integrating functionally 
localized time-varying connectomic information into a 
commonly employed pipeline for studying time-varying 
connectivity at the whole brain level. Initial findings indicate 
that the degree to which domain blocks within the 
connectome are reflected in whole-brain cluster centroids is 

limited: not far from chance for many domain blocks, and 
most prominent in the highly intercorrelated AVSM block 
(Figure 4). The mismatch outside of the AVSM block is 
significantly more pronounced in patients than controls. 
Moreover, using entropy as a metric for (the absence of) 
integrative functional cohesion, we find that patients exhibit 
significantly higher whole-brain trEnt, whole-brain dynEnt, 
blockwise trEnt in the VIS-to-other blocks, and significantly 
lower blockwise trEnt and dynEnt entropy within the AUD-
VIS block (Figure 3).  

Resolving our findings to timepoints that precede whole-brain 
state transitions reveals strong patterning in the functionally-
localized precursor conditions for global state shifts (Figure 
5). The case of Markov loops, i.e. self-to-self transitions, 
provides a tractable space to quickly identify some 
mechanistically and clinically relevant trends. 
Mechanistically, we see that dynEnt tends to be lower than 
average preceding a global self-loop. The exception is global 
state 5, a weakly connected state in which significant disorder 
is “tolerated” both functionally and dynamically. In the case 
of trEnt, we see evidence of relatively cohesive functional 
integration in the self-loops between modularized AVSM-
dominated global states 2 and 4, both more occupied by 
controls at a whole-brain level. Global state 1, more occupied 
by patients, is split during self-loops between high trEnt in 
VIS-to-other blocks, and more functional cohesion in the 
DMN. Finally, the weakly connected global state 5, more 
occupied by patients at the whole-brain level, exhibits 
suppressed functional cohesion in the AUD-VIS block and 
heightened dissipative disorder in the remainder of the 
connectome during self-loops.  

There is also a clear mapping of characteristic SZ effects on 
blockwise entropy (Figure 3) and the blockwise entropic 
conditions consistent with remaining in global state 5 (Figure 
5), a state implicated in the dysconnectivity theory of 
schizophrenia [3], suggesting that functionally localized 
dynamic conditions are playing an important role in this 
theory and its whole-brain evidentiary support.  
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Figure 5 (Top) Significant t-statistics from t-tests for differences of time-
resolved blockwise entropy in timesteps immediately preceding a whole-brain 
transition from the global state indicated along rows, to the global state 
indicated below columns (bottom panel) from the overall blockwise mean 
trEnt; staying in the disconnected global state (row 5) is associated with above 
average trEnt in many blocks, while remaining in either of the modular, 
AVSM-dominant global states (rows 2 and 4) is associated with below average 
trEnt in many blocks; (Bottom) Same display for dynamic blockwise entropy. 
Notably, with the exception of disconnected state 5, the within-state transitions 
exhibit pervasively and significantly below average blockwise dynEnt, which 
is consistent with remaining in a given global state. Dynamic entropy 
preceding self-transitions within disconnected state 5 is elevated in VIS-to-
other blocks, further emphasizing the role of this state in absorbing fluctuating, 
heterogeneous patterns of functional integration. 
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