
  

 

Abstract—This study attempted to classify a small amount of 

electroencephalogram (EEG) data on five states: four tasks 

involving right index-finger flexion (kinesthetic motor imagery, 

visual motor imagery, motor execution, and motor observation) 

and resting with eyes open. We employed a convolutional neural 

network (CNN) as a classifier and compared the classification 

accuracies of two types of CNNs: 1) a "single five-class CNN," 

which classified the aforementioned states with a single CNN 

and 2) "multiple two-class CNNs," wherein ten CNNs that 

classify pairs of states were combined. In addition, the 

classification accuracies were compared between two scenarios: 

one wherein the EEGs from all 19 scalp probe electrodes 

(19-channel EEG) were adopted as input data for the CNN, and 

the other wherein the EEGs of four regions closely related to the 

motor execution and observation of the index finger (4-channel 

EEG) were adopted. The classification accuracies of the single 

five-class CNN with 19- and 4-channel EEGs were 48.2 ± 5.9% 

and 46.6 ± 6.9%, respectively, and those of the multiple 

two-class CNNs with 19- and 4-channel EEGs were 52.8 ± 9.7% 

and 47.5 ± 9.4%, respectively. These results indicate the 

effectiveness of multiple two-class CNNs that utilize the EEGs of 

all scalp electrodes as input data for classifying motor imagery, 

execution, and observation, even in the case of the marginal 

dataset. 

I. INTRODUCTION 

Neurorehabilitation based on brain plasticity has attracted 
considerable attention with regard to the rehabilitation of 
hemiplegic stroke patients with upper-limb motor disorders. 
One of the procedures of this type is the mental practice of 
motor imagery (MI). It is a method for recovering body 
functions by visualizing that the part of the body that cannot be 
moved owing to paralysis is being moved. Motor imagery can 
be classified into two categories: kinesthetic MI (KMI) and 
visual MI (VMI). KMI is the imagery of one's own physical 
activities via somatosensory information, such as joint 
movements and muscle output. Meanwhile, VMI is the 
imagery of one's own physical activities via visual or objective 
observation. It has been observed that the motor-related areas 
important for motor execution are more active during KMI 
and that the visual areas responsible for visual information 
processing are more active during VMI [1]. In addition, 
certain studies have classified VMI into first-person visual 
imagery and third-person visual imagery [2]. KMI or 
first-person visual imagery is considered more effective than 
third-person visual imagery for acquiring motor skills through 
imagery training [3]. Therefore, the objective and quantitative 
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determination of which MI is being performed is a potential 
objective to characterize the best subject-specific MI method 
for optimizing the performance of individual subjects. 

Recently, a method for classifying EEGs through machine 
learning during MI has been developed. Known as the brain–
machine interface (BMI), this method classifies EEGs during 
the MI of the right hand, left hand, and foot through linear 
discriminant analysis and provides feedback to the patient by 
moving an avatar in the virtual space according to the 
classification results [4]. However, machine learning must be 
improved in terms of classification accuracy and online 
application. An approach for addressing this challenge 
involves the application of convolutional neural networks 
(CNNs) (which are effective owing to their suitability for 
end-to-end learning and their capability to learn the original 
waveform), whereby the need for feature extraction is 
circumvented [5]. 

Dose et al. applied a CNN to a large amount of EEG data 
from all 64 scalp electrode sites during (1) KMI for grasping 
the left hand and (2) right hand, (3) KMI for moving both feet, 
and (4) resting. They classified two ((1) and (2)), three ((1), 
(2), and (4)), and four ((1), (2), (3), and (4)) states with 
accuracies of 88.0%, 76.6%, and 65.7%, respectively [6]. Lun 
et al. compared the accuracy of the CNN classification of left- 
or right-hand grip KMI, both-feet KMI, and both-hands KMI 
using EEG from all 64 sites, with the accuracy of using EEG 
from only two sites (FC3 and FC4). The accuracies achieved 
in the two cases were 95.83% and 98.61%, respectively [9]. 
These studies used the same database and were conducted 
under conditions where large amounts of data (over 1500 
EEGs recorded from 109 subjects) were secured. 

In contrast, Sakamoto et al. extracted event-related 
(de)synchronization (ERD/ERS) features in the α and β bands 
of C3, C4, O1, and O2 from EEGs during KMI and VMI of 
right index-finger flexion. They obtained two classes using a 
support vector machine (SVM) and attained 82.5 ± 14.5% [7]. 
Tang et al. reported that when the ERD/ERS during left-and 
right-hand KMI was analyzed periodically to extract features 
and classified using CNN and SVM, the average accuracies 
were 86.41 ± 0.77% and 77.17 ± 7.69%, respectively [10]. In 
these studies, the number of subjects (less than three) and the 
number of classes (two) were small. Moreover, features were 
extracted from EEG and used as input to the classifier. 

Although only a small amount of data can be acquired 
under conditions with limited resources and time, if EEG can 
be input to a classifier without feature extraction and if several 
states can be classified, it is likely to contribute to 
neurorehabilitation. Therefore, we aimed to classify the small 
amount of EEG data during the five states using a CNN. In this 
study, we compared the classification accuracies of a "single 
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five-class CNN" and "multiple two-class CNNs." The latter 
classify five states using a combination of ten CNNs (each 
CNN classifies a pair of states). We also compared the 
classification accuracies when two types of input data were 
adopted: 1) the EEGs of all scalp electrode sites and 2) those 
of the electrode sites closely related to the motor execution 
and observation of the index finger. 

II. METHODS 

A. Subjects 

Ten healthy males aged 21–24 years participated in the 
study. The study was approved by the Ethics Committee of the 
Graduate School of Advanced Science and Technology, 
Kumamoto University. The subjects provided full informed 
consent for the study, in accordance with the Declaration of 
Helsinki. 

B. Tasks 

The subjects were asked to engage five states: two types of 
MI of right index-finger flexion (KMI and VMI), actual 
performance of this exercise (ME), observation of a video of 
this exercise (MO), and resting (NMI). 

The subjects sat on a chair in an electromagnetically 
shielded room and were instructed to observe an LCD screen 
set on a tabletop 1 m in front of them. 

The experimental protocol is illustrated in Fig. 1. Each trial 
lasts 60 s: –50 to –35 s is the break period, –35 to –15 s is the 
rest period prior to instruction (first rest period), –15 to –10 s is 
the instruction period, –10 to 0 s is the rest period after the 
instruction (second rest period), and 0 to 10 s is the task 
period. During the break period, the subjects were free to act 
as they pleased, while the corresponding image was displayed 
on the LCD screen. In the first and second rest periods, the 
LCD screen was blank, and the subjects were asked to rest 
with their eyes open. In the instruction period, the state to be 
engaged by the subject in the task section ("KMI," "VMI," 
"NMI," "ME," or "MO") was displayed on the LCD screen, 
and the subjects were asked to keep their eyes open and rest. In 
the task section, when the state to be engaged by the subject 
was "MO," a video of right index-finger flexion was displayed 
on the LCD screen. Otherwise, the screen remained blank, and 
the subjects engaged the state as instructed. The subjects were 
exposed to white noise (from a speaker installed on the 
tabletop) from the first rest period to the second and to pink 
noise during the task period. The variation from white to pink 
noise was adopted as a trigger for the subject to engage the 
required state. 

The order of states was randomized. Furthermore, ten 
trials for each state were conducted per day, excluding the 
trials in which artifacts such as eye blinks or body movements 
were present in the recorded EEG. Trials were conducted until 
the number of trials for each state exceeded fifty. 

C. Recordings 

1) Psychological measurements 
The movement imagery questionnaire-revised second 

edition (MIQ-RS) was administered for a subjective 
evaluation of the capability to perform motor imagery [8]. The 
MIQ-RS is a questionnaire that evaluates the KMI and VMI 
difficulty of seven exercises on a seven-point scale from 1 

(very difficult) to 7 (very easy). After the experiment, the 
subjects were asked to describe the KMI and VMI difficulty of 
right index-finger flexion in an identical MIQ-RS format. 

2) Physiological measurements 
Electrodes were placed at 19 sites on the scalp and both 

earlobes, according to the international 10–20 system. EEG 
data were recorded using a linked earlobe reference. To verify 
the movement of the right index finger, surface 
electromyogram (EMG) data were measured by positioning 
the explore electrode on the flexor digitorum superficialis of 
the right hand and placing the reference electrode on the distal 
end of the radius. 

Band-pass filters of 0.5–200 Hz and 50–3000 Hz were 
applied to the EEG and EMG, respectively. In addition, a 
notch filter of 60 Hz was applied to both the EEG and EMG. 
The sampling frequency was 1000 Hz. The total recording 
time was 40 s—from 5 s after the start of the first rest period to 
the end of the task period. 

D. Convolutional Neural Network 

The structure of the CNN adopted in this study is 
illustrated in Fig. 2. It is based on the CNN structure proposed 
by Does et al., which consists of an input, a first convolutional, 
a second convolutional, a pooling, a fully connected, and an 

 

 

Figure 1.  Experimental protocol. The colored bars represent periods. The 

state to be performed by the subject in the task section or a video of the right 

index-finger flexion is displayed on the LCD screen in the instruction 
section or the task section when the state is MO, respectively. White or pink 

noise is provided from a speaker in the first/second rest and instruction 

sections or the task section, respectively. 

 

 

Figure 2.  CNN architecture. Main length refers to the length of the input 
and sites to the number of EEG channels used. Convolutional layers 1 and 2 

are for temporal and spatial convolution, respectively. The output layer is 

specified with softmax. 
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output layer [6]. The "data length × number of sites" of the 
EEG was input into the CNN. Then, the "state" was output 
from the CNN. We used 2000, 4000, and 6000 points from the 
start of the task period as the data length, and 19 (all the 19 
sites) and 4 (C3, C4, O1, and O2, which are closely related to 
the motor execution and observation of the index finger) as the 
number of sites. 

In the first convolutional layer, five kernels (20 × 1, 40 × 1, 
60 × 1, 80 × 1, and 100 × 1) were adopted for temporal 
convolution with a one-point shift that implements zero 
paddings, and 40 feature maps were created. 

In the second convolutional layer, 40 feature maps were 
developed via spatial convolution with a one-point shift using 
a 1 × 19 or 1 × 4 kernel (depending on the number of sites). 

To reduce the number of features, a 15 × 1 kernel was 
adopted in the pooling layer to perform 15-point average 
pooling without overlapping. The reduced features were 
combined in the fully connected layer and then sent to the 
output layer, from which the classification results were output. 

1) Single five-class CNN 
We developed a CNN that classified the five states 

simultaneously for each subject. The CNN was trained and 
tested with 80% and 20% data, respectively, for each state. 

2) Multiple two-class CNNs 
First, for each subject, we developed ten CNNs, each of 

which classified a pair of states, i.e., a CNN each to classify 
"KMI and VMI," "KMI and NMI," ..., and "ME and MO." 

Then, we input weighting data into each CNN and 
determined weights for each state of the CNN. For example, 
when 𝐽-weighted KMI data were input into the CNN that 
classified "KMI and VMI," we obtained the output for KMI, 
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VMI, NMI, ME, and MO in the CNN. This process was also 
performed for the CNNs for classifying the other nine pairs of 
states. 

The test data were then input to each CNN. Subsequently, 
we calculated the sum of the product of each output and each 
weight developed. For example, when the test data 𝑡  were 
input into the CNN that classified "KMI and VMI," we 
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was utilized to calculate the total KMI score. Similarly, the 

total scores 𝑆𝑡
𝑉𝑀𝐼, 𝑆𝑡

𝑁𝑀𝐼 , 𝑆𝑡
𝑀𝐸 , and 𝑆𝑡

𝑀𝑂 for VMI, NMI, ME, 
and MO, respectively, were calculated. The highest total score 
was used as the classification result for the test data 𝑡. 

With regard to the number of trials in each state, the CNNs 
were trained, weighted, and tested on 80%, 10%, and 10% of 
the data, respectively. 

III. RESULTS 

The subjective evaluation of right index-finger flexion 
based on the MIQ-RS is presented in Table 1. All the subjects 
self-reported that VMI was more convenient than KMI. 
Subjects #1 and #7 provided the highest ratings. 

Table 2 presents the classification accuracies of the single 
five-class CNN and multiple two-class CNNs for all the 
subjects. When the number of sites was 19, the classification 
accuracy of the multiple two-class CNNs was significantly 
higher than that of the single five-class CNN for all the 
subjects except Subject #2 (p = 0.044, paired t-test). In 
particular, for Subject #1, the classification accuracies of the 
single five-class CNN and multiple two-class CNNs were 
62.3% and 73.1%, respectively (an improvement of over 
10%). However, for Subject #2, the classification accuracies 
were 43.9% and 32.1%, respectively (a decrease of over 10%). 
In contrast, when the number of sites was four, the 
classification accuracy of the multiple two-class CNNs was 
higher than that of the single five-class CNN for half of the 
subjects, although the difference was negligible (p = 0.604, 
paired t-test). 

With regard to the difference in the number of sites, the 
classification accuracy for 19 sites was higher than that for 4 
sites with the single five-class CNN in the case of half of the 
subjects. However, the difference was negligible (p = 0.094, 
paired t-test). The classification accuracy for 19 sites was 
significantly higher than that for 4 sites in the case of the 
multiple two-class CNNs in all the subjects except Subjects 
#2, #8, and #10 (p = 0.008, paired t-test). In particular, for 
Subjects #1, #3, and #7, the classification accuracies for 4 sites 
were 61.5%, 35.7%, and 35.7%, respectively, whereas those 
for 19 sites were 73.1%, 46.4%, and 48.3% (an improvement 
of over 10%). The classification accuracies for Subjects #2, 
#8, and #10 were equal. 

IV. DISCUSSION 

The highest and lowest classification accuracies observed 
in this study were 73.1% and 32.1%, respectively. Although 
the lowest classification accuracy was higher than the 
probability of correct classification by chance (20%) owing to 
the five-state classification, the average classification 
accuracy of 65.7% obtained by Dose et al. [6] was exceeded 
only for Subject #1. This occurred because the number of 
classes in this study was five, whereas that in the study by 
Dose et al. was four. Another reason is that the movement 
considered in this study was only right index-finger flexion, 
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and the corresponding electrode sites were localized around 
C3. In contrast, the motions in the study by Dose et al. were 
left- and right-hand grip and both-feet movements, and the 
corresponding electrode sites were located extensively around 
C4, C3, and Cz. 

The classification accuracy of the single five-class CNN 
was lower than that of the multiple two-class CNNs for only 
Subject #2. This may be because Subject #2 experienced 
difficulties in both KMI and VMI (as revealed by the MIQ-RS 
results). The classification accuracy for Subject #2 was the 
second-lowest for the former CNN and the lowest for the 
latter. Therefore, we conclude that it is necessary to train such 
subjects to ensure correct motor imagery. However, Subject 
#1 self-reported that both KMI and VMI were convenient. 
Moreover, the classification accuracy was higher for the 
aforementioned subject, particularly for the latter CNN. For 
Subjects #8 and #10, the second- and third-highest 
classification accuracy were achieved. However, in the 
MIQ-RS, they self-reported their KMI and VMI to be 4 and 3 
or 5, respectively. Thus, instructing such subjects to reduce the 
discrepancy with their subjective evaluations may be one of 
the solutions. 

With regard to the difference in number of sites, Lun et al. 
compared the accuracy of the CNN classification of either left- 
or right-hand grip KMI, both-feet KMI, and both-hands KMI 
when EEG data from all sixty-four sites were used and that 
when EEG data from only two sites (FC3 and FC4) were used. 
The accuracies attained were 95.83% and 98.61%, 
respectively. This indicates the effectiveness of reducing the 
number of sites by selecting sites closely related to MI [9]. In 
contrast, in this study, the classification accuracy of both 
single five-class CNN and multiple two-class CNNs when all 

the 19 sites were used was higher than that when the 4 sites 
closely related to right index-finger flexion were adopted. 

Tang et al. reported that when the ERD/ERS during 
left-and right-hand KMI was analyzed periodically to extract 
features and was classified using a CNN and SVM, the 
average accuracies were 86.41 ± 0.77% and 77.17 ± 7.69%, 
respectively [10]. When we incorporated Sakamoto et al.’s [7] 
method into SVM to classify the data used in this study, the 
average accuracy obtained was 44.1 ± 6.9%. This was lower 
than that of the single five-class CNN (46.6 ± 6.9%), which 
utilized EEG data from four sites. In this study, the original 
EEG waveform was used, and feature extraction was not 
performed. Furthermore, the number of data in this study 
(approximately 50 for each subject and each task) was 
insufficient. 

V. CONCLUSION 

In this study, only one weighting method (repeating a 
simple average equation) was examined. Because this method 
may not be optimal, it is necessary to determine an optimal 
weighting method in conjunction with other methods. In 
addition, because only one method was used to divide the 
training, weighted, and test data in this study, it is also 
necessary to utilize leave-one-out cross-validation and other 
methods to obtain reliable results. However, in such 
"small-data" (marginal dataset, far from "big-data") cases, 
two-class classification may yield a higher accuracy than 
multi-class classification can. This indicates the effectiveness 
of the multiple two-class CNN for the EEG-based MI/ME/MO 
classification proposed herein. 
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TABLE I.  SUBJECTIVE EVALUATION OF RIGHT INDEX-FINGER 

FLEXION BASED ON MIQ-RS 

Subject #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 

KMI 7 2 3 5 5 4 7 4 4 4 

VMI 7 4 7 5 7 6 7 3 6 5 
 

TABLE II.  CLASSIFICATION ACCURACY OF ALL SUBJECTS IN THE 

SINGLE FIVE-CLASS CNN (SINGLE 5) AND MULTIPLE TWO-CLASS CNNS 

(MULTIPLE 2) [%] 

CNN Single 5 Multiple 2 Single 5 Multiple 2 

Sites 19 4 

Subject     

#1 62.3 73.1 62.3 61.5 

#2 43.9 32.1 40.4 32.1 

#3 38.6 46.4 40.4 35.7 

#4 43.9 48.3 38.6 35.7 

#5 47.3 55.6 43.6 48.1 

#6 48.3 55.2 46.6 51.7 

#7 46.7 53.3 41.7 50.0 

#8 50.0 56.7 51.7 56.7 

#9 49.1 51.9 49.1 48.1 

#10 51.9 55.6 51.9 55.6 

Mean 48.2 52.8 46.6 47.5 

± SD ± 5.9 ± 9.7 ± 6.9 ± 9.4 
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