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Abstract— Developing closed-loop brain stimulation systems
can benefit the treatment of neurological and neuropsychiatric
disorders and facilitate brain functions. Current designs of
closed-loop controllers have used time-invariant linear models
of brain activity to devise non-adaptive controllers. However,
unmodeled nonlinear dynamics can happen during real-time
closed-loop control, leading to nonlinear uncertainty in the
brain activity model. Current non-adaptive controllers cannot
track the nonlinear model uncertainty and are not robust to
noise, both of which can compromise their control performance.
Here, within an L1 adaptive control framework, we develop
a new discrete-time robust and adaptive closed-loop control
algorithm that addresses a general form of nonlinear model
uncertainty. We conduct Monte Carlo simulations to validate
the robust and adaptive control algorithm and show that it sig-
nificantly outperforms existing closed-loop control algorithms.
Our results can facilitate future designs of precise and safe
closed-loop brain stimulation systems to treat neurological and
neuropsychiatric disorders and modulate brain functions.

I. INTRODUCTION

Closed-loop control of brain states using brain stimulation
such as deep brain stimulation (DBS) [1] is an emerging
field in neural engineering because of its potential to treat
neurological and neuropsychiatric disorders such as major
depressive disorder [2] and to facilitate brain functions such
as memory [3]. Different from open-loop stimulation that
delivers stimulation without guidance from ongoing brain
activity, closed-loop stimulation aims to adjust the stimu-
lation in real-time for precise control of brain states, via
using the ongoing brain activity as feedback [2]. Prototype
closed-loop stimulation that uses an on-off control law has
been used for treating Parkinson’s disease [1]. Model-based
closed-loop controllers have been proposed for more precise
control of brain states [4], [5] and hold promise for providing
new therapies for neuropsychiatric disorders [2].

Current designs of model-based closed-loop controllers
have largely assumed time-invariant linear models for brain
activity [4], [5]. Under this assumption, prior to real-time
control, off-line model fitting is performed to fit the model
parameters [4], [5], [6]. The fitted parameters are then fixed
and used to design a time-invariant closed-loop controller.
However, additional nonlinear dynamics can happen during
real-time control, for example, due to stimulation-induced
neural plasticity [7]. These nonlinear dynamics during real-
time control cannot be modeled prior to control. Therefore,
the nonlinear dynamics can be represented by a nonlinear
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uncertainty in the brain activity model. The nonlinear model
uncertainty can compromise the control performance of
time-invariant controllers [8], creating a major obstacle for
achieving precise and safe control of brain states. Therefore,
a new closed-loop control algorithm is needed to address
nonlinear model uncertainty.

To this end, two major challenges need to be resolved. The
first challenge is to design an adaptive controller that can es-
timate and track the nonlinear model uncertainty during real-
time closed-loop control. Current time-invariant controllers
are non-adaptive—they do not adapt their parameters over
time—, thus cannot track the nonlinear model uncertainty.
The second challenge is to design the adaptive controller to
be additionally robust to noise. Adaptive controllers are in
general sensitive to noise and can be unstable [8], which
is unsafe for practical brain stimulation applications. Ro-
bust control designs are needed to address noise sensitivity
and improve stability. L1 adaptive control is a powerful
control-theoretic method for developing robust and adaptive
controllers [8]. However, current discrete-time L1 adaptive
control methods have only assumed a specific linear form of
model uncertainty [9], [10], which may not be sufficiently
robust to more general forms of nonlinear model uncertainty.

In this work we address the above two challenges by
developing a robust and adaptive closed-loop control algo-
rithm within a discrete-time L1 adaptive control framework.
Our first contribution is to design an adaptive algorithm to
estimate and track a general form of nonlinear model uncer-
tainty. The controller then, in a closed-loop manner, uses the
adaptive estimates to cancel the effect of nonlinear model un-
certainty. However, cancellation of model uncertainty should
happen only within the bandwidth of the closed-loop system
since trying to cancel high-frequency noise increases the
controller’s sensitivity to noise and can lead to instability [8].
Thus, our second contribution is to add a low-pass filter to
the adaptive controller to reduce sensitivity to high-frequency
noise for improving robustness. Combining the above two
components, we develop a robust adaptive controller for
modulating brain states. We next conduct comprehensive
Monte Carlo simulations to validate the robust adaptive
controller. We show that prior non-adaptive controllers can
be unstable under nonlinear model uncertainty and have large
control errors. In contrast, the developed robust adaptive
controller is stable and significantly reduces the control
error by more than 80%. Our results have implications for
developing precise and safe closed-loop brain stimulation
systems to treat neurological and neuropsychiatric disorders
and modulate brain functions.
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II. METHODS

A. Dynamic Brain Model with Nonlinear Model Uncertainty

To enable the design of a robust and adaptive closed-loop
controller of brain states, we build a discrete-time dynamic
state-space model of brain network activity that includes
nonlinear uncertain dynamics xt+1 = Axt +But + f(xt, ut) + wt

yt = Cxt + vt
st = Txt

(1)

Here, t is the discrete-time step. xt ∈ Rnx represents a
low-dimensional hidden brain state [4]. yt ∈ Rny represents
high-dimensional brain network activity, e.g., multi-channel
electrocorticogram (ECoG) or local field potential (LFP)
activity [11]. ut ∈ R is the input brain stimulation, such as
the amplitude of a DBS pulse train [4]. st ∈ R represents a
neural biomarker that is indicative of behaviors such as mood
in depression [12]. st is assumed to be a linear function of
the hidden brain state [4], [12]. wt and vt are white Gaussian
noises with zero mean and a joint covariance matrix Q.

The model parameters in (1) are the system matrices
A ∈ Rnx×nx , B ∈ Rnx×1, C ∈ Rny×nx , T ∈ R1×nx , and
the noise covariance matrix Q ∈ R(nx+ny)×(nx+ny). Based
on our prior work [4], [6], [12], we assume that the model
parameters can be estimated off-line via data-driven model
fitting, thus are known in the controller design.

The critical difference between the dynamic brain model
in (1) and our prior work [4], [6], [12] is the additional
term f(xt, ut). We use a general bounded nonlinear function
f(xt, ut) : Rnx × R −→ Rnx of both the brain state xt and
the input ut to model the uncertain dynamics during real-
time control, e.g., stimulation-induced neural plasticity [7].
We assume f(xt, ut) is unknown since it is real-time model
uncertainty and cannot be estimated in off-line model fitting.

Our goal is to design a closed-loop controller to regulate
the brain state xt to track a reference state xref

t with desired
dynamics

xref
t+1 = Amx

ref
t +Brefs∗t , (2)

such that the controlled neural biomarker st tracks a prede-
fined target trajectory s∗t . Here, Bref = BKg , Kg = 1/(T (I−
Am)−1B) (I is an identity matrix) such that when s∗t = s∗ is
a constant, the reference neural biomarker sref

t = Txref
t = s∗

at steady-state. Am ∈ Rnx×nx is picked by the designer to
achieve specific transition behavior and stability margin [8].

B. Main Contributions

We aim to design a robust and adaptive controller that can
deal with the unknown nonlinear model uncertainty f(xt, ut)
in (1). Our prior work [4] has only assumed f(xt, ut) = 0
and designed a non-adaptive controller

unonad
t = Kxxt +Kgs

∗
t , (3)

where Kx is designed to satisfy A+BKx = Am. Our first
contribution is the design of an adaptive controller that can
estimate f(xt, ut) in real time. Specifically, we augment the
non-adaptive component unonad

t with an adaptive term uad
t

ut = unonad
t + uad

t , uad
t = −f̂(xt, ut), (4)
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Fig. 1. Robust and adaptive closed-loop control of brain states. The
robust adaptive controller (dashed dark blue box) consists of a non-adaptive
component (magenta box) and a robust adaptive augmentation (purple box).

where f̂(xt, ut) is an adaptive estimate of f(xt, ut) (Fig. 1).
The adaptive augmentation uad

t aims to cancel the effect of
f(xt, ut) on the dynamics of the brain state xt.

Our second contribution is to improve the robustness of
the adaptive augmentation uad

t to the noise in the adaptive
estimate f̂(xt, ut). Prior control-theoretic work has used a
simple linear term B(σ + θxt) in the adaptation to approx-
imate f(xt, ut) [9], [10], which has two limitations. It does
not model any uncertainty introduced by the input ut and is
exclusively in the range space of the input matrix B. Thus, it
is not robust under a general nonlinear uncertainty f(xt, ut).
In contrast, we use a general approximation f̂(xt, ut) that
does not have the above limitations. We use the L1 control
theory [8] to further improve the adaptive augmentation uad

t

to be a robust adaptive augmentation
uro+ad
t = Dt ~ uad

t , (5)
where Dt is the impulse response of a low-pass filter and
~ represents discrete-time convolution (Fig. 1). The low-
pass filter facilitates robustness with the motivation that any
cancellation of model uncertainty should only happen within
the bandwidth of the closed-loop system since aggressive
cancellation outside the bandwidth is essentially trying to
cancel irreducible noise, and can lead to instability [8].

To summarize, our final robust adaptive controller takes
the following form (Fig. 1)

ut = unonad
t + uro+ad

t = Kxxt +Kgs
∗
t + uro+ad

t . (6)
Next, we briefly introduce how we compute uro+ad

t . It is done
via two steps; design an adaptive estimator f̂(xt, ut) to track
nonlinear model uncertainty (section II-C) and design a low-
pass filter Dt for achieving robustness (section II-D).

C. Adaptive Estimator

We reformulate the state equation in (1) so that it is
amenable for the L1 adaptive control design. First, we
assume that it takes the form f(xt, ut) = f̃(xt) + B∆ωut,
where f̃ : Rnx −→ Rnx is an unknown bounded nonlinear
function representing uncertainty in the brain state xt and
∆ω ∈ R is an unknown bounded constant representing
uncertainty of the input gain. Plugging this form of f(xt, ut)
and control law (6) into the state equation in (1), we have

xt+1 = Amxt +Brefs∗t +Bωuro+ad
t + g(xt),
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with ω = 1 + ∆ω representing the uncertain input gain and
g(xt) = f̃(xt)+B∆ωKgs

∗
t +B∆ωKxxt+wt summarizing

other uncertainties. Importantly, we see that uro+ad
t can only

try to cancel the uncertainty g(xt) via the range space of B.
To facilitate the cancellation of uncertainty, we decompose
g(xt) into two parts g(xt) = Bg1(xt) + Bumg2(xt), where
the first part Bg1(xt) is in the range space of B, and the
second part Bumg2(xt) is in the null space of B, i.e., Bum ∈
Rnx×(nx−1) satisfies B

′
Bum = 0 and rank([B,Bum]) = nx.

We thus rewrite the state equation as

xt+1 = Amxt+Brefs∗t +B(ωuro+ad
t + g1(xt)) +Bumg2(xt).

(7)
With this formulation, we next derive the adaptive esti-

mator for tracking the model uncertainties ω, g1(xt) and
g2(xt). Motivated by prior work [8], to reparametrize (7)
for deriving the adaptive estimator, we use the following
approximation g1(xt) ≈ σ1,t + θ1,t ‖xt‖∞, g2(xt) ≈ σ2,t +
θ2,t ‖xt‖∞, where ‖xt‖∞ = maxi=1,··· ,nx

(sup0≤τ≤t
∣∣xiτ ∣∣)

is the truncated L∞ norm [8]. We can then write (7) as

xt+1 = Amxt +Brefs∗t + B(ωtut + σ1,t + θ1,t ‖xt‖∞)
+ Bum(σ2,t + θ2,t ‖xt‖∞),

which can further be written as

xt+1 = Amxt +Brefs∗t + [B,Bum]ζ
′

tφt, (8)

where ζt = [ζ1,t, ζ2,t], ζ1,t = [ωt, σ1,t, θ1,t]
′
, ζ2,t =

[0, σ2,t, θ2,t]
′

and φt = [ut, 1, ‖xt‖∞]
′

(·′ is transpose). ζt
contains all the adaptive parameters that need to be estimated.

From (8), we use the standard recursive least-squares
method to compute the estimate of ζt+1, denoted ζ̂t+1, as

ζ̂t+1 = Pro

(
ζ̂t + γφt

L(xt+1 −Amxt −Brefs∗t )− ζ̂
′

tφt
φ

′
tφt

)
,

(9)
where L = [B,Bum]−1, 0 < γ ≤ 1 is the adaptation rate,
and Pro(·) is the standard projection operator to bound the
parameters inside their known convex set [8].

Note that in the adaptive estimator (9), we assume that the
brain state xt can be directly observed. In practice, the brain
state xt is often hidden and needs to be estimated from the
brain network activity yt (section II-E).

With the adaptive estimate in (9), the adaptive augmenta-
tion in (4) can be computed as

uad
t = −ζ̂

′

1,tφt −Ht ~ (ζ̂
′

2,tφt), (10)
where Ht is the impulse response of a specific filter. Here,
ζ̂

′

1,tφt is used to cancel g1(xt). Since uad
t can only influence

the brain state within the range space of B, it cannot com-
pletely cancel the term Bumg2(xt) that is in the null space
of B. However, partial cancellation of Bumg2(xt) at steady
state is possible, and it’s done via the filter Ht in (10), whose
transfer function is Hz = (T (zI − Am)−1Bum)/(T (zI −
Am)−1B), where Hz is the z-transform of Ht.

D. Robust Controller

With the state equation formulation (7), we derive the low-
pass filter in the robust adaptive controller (5) using the L1

adaptive control theory. We select the transfer function of
the low-pass filter Dt—denoted as Dz—to be stable, strictly
proper and such that the bandwidth of Dz is sufficiently
wider than the closed-loop transfer function, or equivalently
the L1 norm condition ‖Pz(1 − Dz)‖1 � 1 is satisfied.
Here, we use the transfer function of the reference model (2)
Pz = (zI−Am)−1B to approximate the closed-loop transfer
function. With this condition, the low-pass filter Dz preserves
the bandwidth of the closed-loop system and only cancels
model uncertainty within this bandwidth, thus reduces sensi-
tivity to high-frequency noise and achieves robustness [8].
From (5) and (10), the robust adaptive augmentation is
computed as

uro+ad
t = Dt ~ (−ζ̂

′

1,tφt −Ht ~ (ζ̂
′

2,tφt)). (11)

To summarize, equations (9), (11) and (6) give the final
robust adaptive controller.

E. Brain State Estimator

To estimate the hidden brain state xt from the observed
brain network activity yt, we additionally need to use a
brain state estimator [4]. Prior work has suggested that for
many brain functions and dysfunctions, the hidden brain state
often has a much lower dimension than the observed brain
activity [13], i.e., nx � ny . Therefore, here, we use a simple
estimation xt ≈ C†yt, where C† is the Moore–Penrose
pseudo-inverse. Using the certainty equivalence principle, we
use the state estimate C†yt to replace xt in the adaptation (9).

F. Simulations

We run comprehensive Monte Carlo simulations to test
the robust adaptive controller. We simulated ground-truth
dynamic brain models using (1), where we use a fully-
connected feed-forward deep neural network (5 layers with
10 neurons at each layer) to simulate the nonlinear model
uncertainty f(xt, ut). We in total simulated 9000 ground-
truth dynamic brain models with the dimension of the hidden
brain state nx ranging from 2 to 10. We fixed the dimension
of the brain network activity ny = 3×nx for each model. In
each model, the system matrices and the noise covariance
matrix are randomly generated in the same way as our
prior work [4], and the weight matrices in the deep neural
network are generated as standard random Gaussian matrices.
In general, the simulated ground-truth dynamic brain model
can be unstable. The target trajectory is set as a constant
value of s∗ = 10 in all simulations.

We compare the robust adaptive controller with three
other controllers: the non-adaptive controller in our prior
work [4] (see (3)); the adaptive controller in [10], which
is not robust to nonlinear uncertainty (termed non-robust
adaptive controller); an ideal controller that theoretically has
the best possible control performance. The ideal controller is
constructed by replacing the adaptive estimates in (11) with
the ground-truth g1(xt) and g2(xt).

We use the normalized steady-state control error e to
quantify the control performance of each controller relative to
the target value s∗, e =

√∑T
t=t0

(st − s∗)2/(T − t0)/s∗ ×
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100%, where st is the controlled neural biomarker in closed
loop, t0 is the starting time point of steady state and T is
the total control time period in simulation.

III. RESULTS AND DISCUSSIONS

For two example dynamic brain models (Fig. 2a), we
observed that under nonlinear model uncertainty, the non-
adaptive controller did not track the target level and had a
large control error (e = 71%). While the non-robust adaptive
controller reduced the control error, it still had a larger
control error compared with the ideal controller and did not
track the target (e = 33%). By contrast, the robust adaptive
controller tracked the target and significantly reduced the
control error (e = 11%), performing similarly with the ideal
controller (e = 10%). Note that the control error of the ideal
controller was not zero because the ground-truth dynamic
brain models had noise.

Monte Carlo simulation results confirmed the above ob-
servations. First, for more than 50% of the ground-truth
brain dynamic models, the non-adaptive controller and the
non-robust adaptive controller resulted in unstable control.
Therefore, under general nonlinear model uncertainty, the
two controllers could have severe instability issues and would
be unsafe in practical applications of controlling brain states.
In contrast, in all the ground-truth brain dynamic models, the
robust adaptive controller was stable. The result suggested
the stability of the robust adaptive controller under general
nonlinear model uncertainty. Providing theoretical stability
analysis for the robust adaptive controller is an important
future direction to ensure safety in practical applications.

Second, consistent with the two examples, compared with
the non-adaptive controller, the robust adaptive controller
had a significantly smaller control error (23.73% ± 0.56%
v.s. 132.9% ± 1.37%, mean ± s.e.m., Wilcoxon signed-
rank test P < 10−50; Fig. 2b), reducing the non-adaptive
control error relatively by 82.1%. Compared with the non-
robust adaptive controller, the robust adaptive controller
also showed smaller control error (23.73% ± 0.56% v.s.
119.9% ± 1.40%, Wilcoxon signed-rank test P < 10−50;
Fig. 2b), reducing the non-robust adaptive control error
relatively by 80.2%. Moreover, the robust adaptive controller
performed close to the ideal controller (23.73%±0.56% v.s.
23.47% ± 0.53%; Fig. 2b). These results indicates that the
developed robust adaptive controller could achieve stable and
precise control of brain states under a wide range of nonlinear
model uncertainties. One future direction is to validate the
generalizability of the controller by simulating more realistic
biophysical models, e.g., neuronal spiking models for Parkin-
son’s disease [1]. Another future direction is to combine our
control algorithm with the recursive estimator developed in
our prior work [14] to achieve better estimation and control
of the hidden brain state from the observed brain activity.

IV. CONCLUSIONS

In this work, we develop a new discrete-time robust and
adaptive algorithm for closed-loop control of brain states.
Our closed-loop control algorithm uses an adaptive estimator
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Fig. 2. (a) Two example closed-loop simulations. Dashed line represents the
starting point of applying control. (b) Control errors of different controllers
(Bar represents mean, whiskers represents s.e.m., ∗ ∗ ∗, P < 0.0005).

to track a general form of nonlinear model uncertainty and
uses a low-pass filter to reduce sensitivity to high-frequency
noise for achieving robustness. Monte Carlo simulation re-
sults show that the developed algorithm is stable and outper-
forms existing controllers. Our results have implications for
future designs of intelligent and safe neuromodulation sys-
tems for treating neurological and neuropsychiatric disorders
and modulating brain functions.
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