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Abstract— Automatic breast ultrasound image (BUS) segmen-
tation is still a challenging task due to poor image quality
and inherent speckle noise. In this paper, we propose a
novel multi-scale fuzzy generative adversarial network (MSF-
GAN) for breast ultrasound image segmentation. The proposed
MSF-GAN consists of two networks: a generative network
to generate segmentation maps for input BUS images, and a
discriminative network that employs a multi-scale fuzzy (MSF)
entropy module for discrimination. The major contribution of
this paper is applying fuzzy logic and fuzzy entropy in the
discriminative network which can distinguish the uncertainty
of segmentation maps and groundtruth maps and forces the
generative network to achieve better segmentation performance.
We evaluate the performance of MSF-GAN on three BUS
datasets and compare it with six state-of-the-art deep neural
network-based methods in terms of five metrics. MSF-GAN
achieves the highest mean IoU of 78.75%, 73.30%, and 71.12%
on three datasets, respectively.

I. INTRODUCTION

Breast cancer is the most common cancer (excluding skin
cancers) and is the second leading cause of cancer death
among US women. Automatic BUS image segmentation can
provide radiologists a second opinion and help them make
correct decisions and improve the diagnosis accuracy. It sep-
arates the tumor regions from the background automatically.
However, BUS image segmentation is still a challenging task
due to poor image quality and inherent speckle noise [1].

Many approaches have been proposed for BUS image
segmentation. These approaches can be divided into five
categories: thresholding algorithms, region-growing algo-
rithms, watershed algorithms, graph-based algorithms, and
deep neural network-based algorithms [2]. In [3], patch-
based LeNet [4], U-Net [5], and FCN [6] perform well for
BUS image segmentation on two BUS datasets. Shareef et al.
[7] propose a small tumor-aware network to better segment
breast tumors with different sizes by using kernels with
three different sizes at each convolutional layer. Lei et al.
[8] propose a boundary regularized convolutional encoder-
decoder network for the segmentation of breast anatomical
layers that is robust to speckle noise and posterior acous-
tic shadows. They further design a self-co-attention neural
network that employs both spatial and channel attention
modules to explore contextual relationships in BUS images
and achieves better segmentation results [9]. In [10], a
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medical knowledge constrained deep learning + conditional
random fields method is proposed for three-layer BUS image
semantic segmentation. To further improve the performance
of classic segmentation networks, researchers propose a
Generative Adversarial Network (GAN) [11] which employs
an adversarial network to guide the segmentation network
to generate more accurate segmentation results. Xue et al.
[12] further propose an adversarial network with multi-scale
L1 loss for image segmentation that can learn features in
different scales and capture contextual relationships to boost
the segmentation accuracy.

Despite the good performance of the above methods, they
do not take the uncertainty in BUS images into account. In
this study, we propose a novel multi-scale fuzzy generative
adversarial network (MSF-GAN) for BUS image segmen-
tation that uses uncertainty maps to train the discriminative
network. Inspired by reference [12], the proposed MSF-GAN
consists of a generative network (G-net) and a discrimi-
native network (D-net) which respectively minimizes and
maximizes the loss functions. The output of G-net is a seg-
mentation map. The proposed MSF-GAN employs a fuzzy
attentive feature generator and a multi-scale fuzzy entropy
(MSF) module which can transform the segmentation maps
and groundtruth maps into the fuzzy domain to measure
uncertainty. The multi-scale fuzzy entropy (MSF) module
can distinguish the difference in uncertainty maps from two
inputs and help to train a better segmentation network.
The major contributions of the proposed approach are: (1)
Design a novel MSF-GAN for BUS image segmentation that
outperforms six state-of-the-art deep neural network-based
methods on three BUS datasets in terms of five metrics.
(2) Design a fuzzy attentive feature generator to generate
fuzzy attentive feature maps for the segmentation maps
generated by G-net and groundtruth maps. (3) Design an
MSF module to measure the uncertainty in segmentation
maps and groundtruth maps and calculate a multi-scale L1

loss on uncertainty maps to help to train the segmentation
network.

II. METHOD

The proposed MSF-GAN consists of a G-net for the
generation of pixel-wise segmentation maps, a D-net for
guiding G-net to generate more accurate segmentation maps,
and a fuzzy attentive feature generator.

A. Overview

The architecture of the proposed MSF-GAN is illustrated
in Fig. 1. MSF-GAN employs a U-ResNet (a U-shape
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Fig. 1. An overview of the proposed MSF-GAN.

network with ResNet-101 as its backbone) as its G-net to
generate pixel-wise segmentation results, denoted as seg-
mentation maps. All input BUS images are first resized to
128× 128 and then fed into G-net. A segmentation map of
size 128 × 128 × C is generated for an input BUS image,
where C represents the total number of categories. Each pixel
contains C values in the segmentation map and each element
represents the probability to the corresponding category.
Then, we use a fuzzy attentive feature generator that takes
an original BUS image and its groundtruth map as inputs
to compute a fuzzy attentive groundtruth map. Similarly, we
compute a fuzzy attentive segmentation map by an original
BUS image and its segmentation map. The fuzzy attentive
feature generator will be introduced in subsection II-B in
detail. The D-net is composed of five convolutional layers
with kernels of size 4 × 4, stride 2, padding 1, and ReLU
activation function. It takes a fuzzy attentive groundtruth map
and a fuzzy attentive segmentation map as two inputs and
calculates a multi-scale L1 loss on their uncertainty maps,
which will be introduced in subsection II-C. The objective
of G-net is to generate accurate segmentation maps and the
objective of D-net is to distinguish the uncertainty of the
segmentation maps and groundtruth maps. For an input BUS
image, if the uncertainty map of the segmentation map is very
close to the uncertainty map of the groundtruth map, then
it is hard for D-net to discriminate them. In contrast, if the
uncertain map of the segmentation map is not close to the
uncertain map of the groundtruth map, it means there still
exists uncertainty in the segmentation map. The goal is to
make G-net generate very accurate segmentation maps which
contain similar uncertainty maps to the groundtruth maps. In
this study, we enhance the discriminating ability of the D-net
by using a fuzzy attentive feature generator and a multi-scale
L1 loss calculated on uncertainty maps and therefore force
G-net to generate more accurate segmentation maps that are
very close to the groundtruth maps.

B. Fuzzy Attentive Feature Generator

The target for the fuzzy attentive feature generator is to
transform the input of the D-net to the fuzzy domain. Fig. 2
illustrates the proposed fuzzy attentive feature generator. It
takes a pair of an original BUS image and its segmentation
map generated by the G-net, or a pair of an original BUS
image and its groundtruth map as inputs. Specifically, for
an original image, its segmentation map and its groundtruth

map are individually transformed into the fuzzy domain by
a convolutional operator with a kernel size of 1 × 1 and
Sigmoid function as activation function. The operation of
fuzzification can be represented by:

Fx = Conv1× 1(x) (1)

where x can be an original BUS image of size 128× 128, a
segmentation map generated by G-net of size 128×128×C,
or a groundtruth map of size 128×128×C. After fuzzifica-
tion, x is transformed into Fx of size 128× 128×C. Then,
we respectively perform a fuzzy AND operator on a pair
of the fuzzified original image (denoted as Fo) and fuzzified
segmentation map (denoted as Fpre), and on a pair of Fo and
the fuzzified groundtruth map (denoted as Fgt) to generate a
fuzzy attentive groundtruth map FAgt and a fuzzy attentive
segmentation map FApre. This operation can be represented
by:

FApre = min(Fo, Fpre) (2)
FAgt = min(Fo, Fgt) (3)

where min is the AND operator in fuzzy logic that performs a
pixel-wise minimization operation on its two inputs. FApre
and FAgt are of size 128×128×C. Different from reference
[12] that directly uses groundtruth map masked images and
segmentation map masked images as the inputs of D-net, we
first generate three types of fuzzified maps and then compute
two fuzzy attentive maps and use them as the inputs of D-
net. We can train D-net better by using the fuzzy attentive
maps to extract multi-scale features and calculate a multi-
scale L1 loss on uncertainty maps extracted from these fuzzy
attentive maps because through a non-linear transformation
of the fuzzification and fuzzy AND operator in fuzzy feature
generator, the fuzzy features are more discriminable than the
non-fuzzy features and we can also measure uncertainty on
fuzzy features.

C. Multi-Scale Fuzzy Entropy Module

In D-net, five convolutional layers are used to extract
multi-scale features on the input fuzzy attentive groundtruth
map FAgt and fuzzy attentive segmentation map FApre.
These features are then fed into the proposed MSF module
to calculate a multi-scale L1 loss on uncertainty maps, which
are calculated via FAgt and FApre. By training a powerful
D-net to better discriminate the uncertainty map of FAgt
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Fig. 2. Illustration of the proposed fuzzy attentive feature generator.

and that of FApre, G-net is forced to generate more accurate
segmentation maps.

As shown in Fig. 1, D-net takes a fuzzy attentive
groundtruth map FAgt and a fuzzy attentive segmentation
map FApre as the inputs, then employs five convolutional
layers to extract multi-scale features. Let L denote the total
number of convolutional layers in D-net (here L = 5). Let
f l(FApre) and f l(FAgt) denote the feature map extracted
by the l-th layer of D-net, respectively. Then, it performs
a 1 × 1 convolution with ReLU activation function on
f l(FApre) and f l(FAgt) respectively to transform their
channel number to C to calculate fuzzy entropy. The trans-
formed feature maps are denoted as:

T lpre = conv1× 1(f l(FApre)) (4)

T lgt = conv1× 1(f l(FAgt)) (5)

Then, it calculates the fuzzy entropy on T lpre and T lgt to
represent their uncertainty maps, respectively:

Elpre(i, j) = −
1

logC

C∑
c=1

T lpre(i, j, c) · log T lpre(i, j, c) (6)

Elgt(i, j) = −
1

logC

C∑
c=1

T lgt(i, j, c) · log T lgt(i, j, c) (7)

where T lpre(i, j, c) and T lgt(i, j, c) represent the values of the
i-th row, j-th column and c-th channel of T lpre and T lgt,
respectively. It then computes a multi-scale L1 loss on the
uncertainty maps Elpre(i, j) and Elgt(i, j) by:

min
θG

max
θD
L(θG, θD) =

1

N

N∑
n=1

`mae(E
l,n
pre, E

l,n
gt ) (8)

where θG and θD denote the parameters of G-net and D-net,
respectively; N denotes the total number of training images;
El,npre and El,ngt denote the uncertainty map extracted by the
l-th layer on the n-th training image, respectively. `mae is
the Mean Absolute Error (MAE) (L1 loss), defined as:

`mae(E
l
pre, E

l
gt) =

1

L

L∑
l=1

∥∥Elpre − Elgt∥∥1 (9)

The loss L in Eq. (8) can capture a rich contextual rela-
tionship between pixels by using the multi-scale uncertainty
maps Elpre and Elgt generated by different convolutional
layers. During the training of MSF-GAN, we minimize L

with respect to the parameters θG of G-net, while maximizing
it with respect to the parameters θD of D-net. The objective
of G-net is to generate accurate segmentation maps that
contain similar uncertainty to groundtruth maps so that L is
minimized. The uncertainty is represented by fuzzy entropy.
In contrast, the objective of D-net is to distinguish the
uncertainty of segmentation maps from the uncertainty of
groundtruth maps and therefore force G-net to generate ac-
curate segmentation maps. When D-net is powerful enough,
it can distinguish these two kinds of uncertainty maps very
well so that L is maximized. To implement this strategy, we
train G-net and D-net in an alternating scheme: first, fix G-net
and train D-net to maximize L, and then fix D-net and train
G-net to minimize L. During the training procedure, both
G-net and D-net are becoming more and more powerful. By
using fuzzy attentive feature maps and the multi-scale L1

loss computed from these fuzzy attentive feature maps, the
discriminating ability of D-net is further enhanced compared
with [12]. Therefore, our more powerful D-net can better
guide G-net to generate more accurate segmentation maps
close to groundtruth maps.

III. EXPERIMENT RESULTS AND DISCUSSION

We evaluate the performance of the proposed MSF-GAN
on three datasets: a multi-layer dataset, Dataset B [3] and
Dataset BUSI [13]. Dataset B and dataset BUSI are two
public BUS datasets where groundtruths annotations only
separate tumors and background. Dataset B has 163 images
and Dataset BUSI has 780 images. The multi-layer dataset is
a private dataset consisting of 325 images. The groundtruth
annotations include four breast anatomical layers (fat layer,
mammary layer, muscle layer, background layer) and tumors.
The privacy of the patient is well protected. The experimental
procedures involving human subjects described in this paper
were approved by the Institutional Review Board. In total,
there are 1268 images used for evaluation.

To ensure a fair comparison, we set these parameters to
be the same for all compared methods. All experiments are
conducted on Ubuntu 18.04 system with Intel(R) Xeon(R)
CPU E5-2620 2.00 GHz and two NVIDIA GeForce 1080Ti
graphics cards. An Adam optimizer with learning rate =
0.0001, β1 = 0.9, and β2 = 0.99 is used for training. The
batch size is set as 12, and the number of training epochs is
set as 80. The initial weights are initialized randomly. Input
images are augmented by horizontal flip, horizontal shift,
vertical shift, rotation, zooming, and shear mapping before
fed into networks. We employ 10-fold cross-validation to
evaluate the performance of MSF-GAN and six compared
methods.

We further compare the segmentation performance of
MSF-GAN and six state-of-the-art deep neural network-
based methods on above mentioned three BUS datasets. The
six compared methods are: U-Net with ResNet-101 as its
backbone (denoted as U-ResNet), U-Net with VGG-16 as
its backbone (denoted as U-VGG), FCN-8s [6], SegAN [12],
PSPNet [14], and Deeplabv3+ [15]. We use five metrics for
the evaluation. They are: True Positive Ratio (TPR), False
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Positive Ratio (FPR), Intersection over Union (IoU), Dice’s
Coefficient (DSC), and Area Error Ratio (AER).

TABLE I
RESULTS OF MULTI-LAYER SEGMENTATION (IOU (%))

Class1 Class2 Class3 Class4 Class5 Mean
U-ResNet 81.50 73.41 72.07 74.47 75.29 75.35
U-VGG 70.34 66.72 66.17 65.91 74.66 68.76
FCN-8s 82.57 75.47 75.53 78.59 74.42 77.32
SegAN 81.68 75.89 72.53 81.69 77.23 77.80
PSPNet 82.07 74.40 74.49 77.36 74.75 76.61
Deeplab 78.91 68.71 67.33 73.94 69.04 71.58
MSF-GAN 83.11 77.05 73.11 81.98 78.50 78.75
* Class1: fat layer, Class2: mammary layer, Class3: muscle layer, Class4:

background, Class5: tumor. Bold values are the best results for the corre-
sponding classes.

Table I compares the performance of MSF-GAN and six
compared methods on the multi-layer dataset in terms of IoU.
On this dataset, MSF-GAN achieves the best segmentation
results for all classes in terms of IoU. Specifically, it achieves
the highest mean IoU value of 78.75% among five classes in-
cluding fat layer, mammary layer, muscle layer, background
and tumor. It should be noticed that the proposed MSF-GAN
outperforms SegAN, which is also a GAN-based network
using a multi-scale L1 loss, for all classes in terms of IoU.
As shown in Table I, the proposed fuzzy attentive feature
generator and multi-scale L1 loss calculated on multi-scale
uncertainty maps are efficient to enhance the discriminating
ability of D-net, and force G-net to generate more accurate
segmentation results.

TABLE II
RESULTS ON PUBLIC DATASETS (%)

Datasets Methods TPR FPR IoU DSC AER

Dataset B [3]

U-ResNet 83.58 34.40 71.43 79.45 50.82
U-VGG 79.30 45.84 68.16 76.40 66.54
FCN-8s 82.72 41.14 67.50 76.87 58.42
SegAN 81.13 49.96 70.11 78.05 68.83
PSPNet 81.08 40.42 69.77 78.24 59.34
Deeplab 63.68 36.06 52.93 61.91 72.38

MSF-GAN 84.57 40.31 73.30 81.58 55.73

Dataset BUSI
[13]

U-ResNet 79.40 46.02 69.26 77.90 66.62
U-VGG 78.66 41.98 68.77 77.37 63.32
FCN-8s 74.23 46.69 63.16 73.03 72.63
SegAN 76.23 25.95 69.21 77.83 49.71
PSPNet 77.11 46.65 65.21 74.75 69.54
Deeplab 59.88 39.39 49.65 59.39 79.52

MSF-GAN 78.34 20.98 71.12 79.99 42.64

Table II compares the performance of MSF-GAN and six
state-of-the-art methods on Dataset B and Dataset BUSI in
terms of TPR, FPR, IoU, DSC and AER. MSF-GAN has
the highest TPR value of 84.57%, the highest IoU value of
73.30% and the highest DSC value of 81.58% on Dataset B.
MSF-GAN achieves the best performance in terms of IoU,
FPR, DSC, and AER and a comparable TPR value on Dataset
BUSI. Specifically, it improves the second-best method by
2.69%, 2.68%, 19.15%, and 14.22% for IoU, DSC, FPR and
AER, respectively.

IV. CONCLUSIONS

We propose a novel MSF-GAN method for BUS im-
age segmentation consisting of a generative network and

a discriminative network. MSF-GAN employs a fuzzy at-
tentive feature generator to extract fuzzy attentive feature
maps respectively from segmentation maps generated by the
generative network and from groundtruth maps, and then
uses an MSF module to extract multi-scale uncertainty maps
from these fuzzy attentive feature maps to calculate a multi-
scale L1 loss that can capture the rich contextual relationship
among pixels. By using the fuzzy attentive feature generator
and the multi-scale L1 loss calculated on uncertainty maps,
the discriminating ability of the discriminative network is en-
hanced and can better guide the generative network to gener-
ate more accurate segmentation results. The proposed MSF-
GAN outperforms six state-of-the-art deep neural network-
based methods in terms of TPR, FPR, IoU, DSC, and AER
on three BUS datasets.

REFERENCES

[1] Q. Huang, X. Huang, L. Liu, Y. Lin, X. Long, and X. Li, “A
case-oriented web-based training system for breast cancer diagnosis,”
Computer methods and programs in biomedicine, vol. 156, pp. 73–83,
2018.

[2] A. E. Ilesanmi, U. Chaumrattanakul, and S. S. Makhanov, “Methods
for the segmentation and classification of breast ultrasound images: a
review,” Journal of Ultrasound, pp. 1–16, 2021.

[3] M. H. Yap, G. Pons, J. Marti, S. Ganau, M. Sentis, R. Zwiggelaar,
A. K. Davison, and R. Marti, “Automated breast ultrasound lesions
detection using convolutional neural networks,” IEEE journal of
biomedical and health informatics, vol. 22, no. 4, pp. 1218–1226,
2017.

[4] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proceedings of the IEEE,
vol. 86, no. 11, pp. 2278–2324, 1998.

[5] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional
networks for biomedical image segmentation,” in International Confer-
ence on Medical image computing and computer-assisted intervention.
Springer, 2015, pp. 234–241.

[6] J. Long, E. Shelhamer, and T. Darrell, “Fully convolutional networks
for semantic segmentation,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2015, pp. 3431–3440.

[7] B. Shareef, M. Xian, and A. Vakanski, “Stan: Small tumor-aware
network for breast ultrasound image segmentation,” in 2020 IEEE 17th
International Symposium on Biomedical Imaging (ISBI). IEEE, 2020,
pp. 1–5.

[8] B. Lei, S. Huang, R. Li, C. Bian, H. Li, Y.-H. Chou, and J.-Z.
Cheng, “Segmentation of breast anatomy for automated whole breast
ultrasound images with boundary regularized convolutional encoder–
decoder network,” Neurocomputing, vol. 321, pp. 178–186, 2018.

[9] B. Lei, S. Huang, H. Li, R. Li, C. Bian, Y.-H. Chou, J. Qin, P. Zhou,
X. Gong, and J.-Z. Cheng, “Self-co-attention neural network for
anatomy segmentation in whole breast ultrasound,” Medical image
analysis, vol. 64, p. 101753, 2020.

[10] K. Huang, H.-D. Cheng, Y. Zhang, B. Zhang, P. Xing, and C. Ning,
“Medical knowledge constrained semantic breast ultrasound image
segmentation,” in 2018 24th International Conference on Pattern
Recognition (ICPR). IEEE, 2018, pp. 1193–1198.

[11] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-
Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial
networks,” arXiv preprint arXiv:1406.2661, 2014.

[12] Y. Xue, T. Xu, H. Zhang, L. R. Long, and X. Huang, “Segan: Adversar-
ial network with multi-scale l1 loss for medical image segmentation,”
Neuroinformatics, vol. 16, no. 3, pp. 383–392, 2018.

[13] W. Al-Dhabyani, M. Gomaa, H. Khaled, and A. Fahmy, “Dataset of
breast ultrasound images,” Data in brief, vol. 28, p. 104863, 2020.

[14] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2017, pp. 2881–2890.

[15] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-decoder with atrous separable convolution for semantic
image segmentation,” in Proceedings of the European conference on
computer vision (ECCV), 2018, pp. 801–818.

3196


