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Abstract— In functional magnetic resonance imaging (fMRI),
spatial smoothing procedure is generally a stable step in
the preprocessing stream. Previous research (including ours)
suggested dependency of the static functional connectivity on
the size of the spatial smoothing kernel size. But its impact
on the time-varying patterns of functional connectivity has not
been investigated. Here, we sought to identify the effects of
spatial smoothing on brain dynamics by performing dynamic
functional network connectivity (dFNC) and meta-state
analysis, a unique approach capable of examining a higher-
dimensional temporal dynamism of whole-brain functional
connectivity. Gaussian smoothing kernel with different widths
at half of the maximum of the height of the Gaussian (4, 8, and
12 mm FWHM) were used during preprocessing prior to the
group independent component analysis (ICA) with a relatively
high model order of 75. dFNC was conducted using the sliding-
time window approach and k-means clustering algorithm.
Meta-state dynamics method was performed by reducing
the number of windowed FNC correlations using principal
components analysis (PCA), temporal and spatial ICA and k-
means. Results revealed robust effects of spatial smoothing on
the connectivity dynamics of several network pairs including
a variety of cognitive/attention networks in a connectivity
state with the highest occurrence (FDR corrected-p < 0.01).
Meta-state analyses indicated significant changes in meta-
state metrics including the number of meta-states, meta-state
changes, meta-state span, and the total distance. These changes
were particularly pronounced when we compared resting state
data smoothed with 8 vs. 12 mm FWHM. Our preliminary
findings give insights into the effects of spatial smoothing
kernel size on the dynamics of functional connectivity and its
consequences on meta-state parameters. It also provides further
indication of the importance of evaluating variance associated
with preprocessing steps on analysis outcomes.

I. INTRODUCTION

In blood oxygenation level-dependent (BOLD) functional
magnetic resonance imaging (fMRI), acquired images
generally require some preprocessing prior to analysis [1].
One common procedure is spatial smoothing, which usually
involves convolving the BOLD signals with a Gaussian
function of a specific size defined as the Full Width at Half
Maximum (FWHM) [1]. Previous studies that investigated
the impact of spatial smoothing on region of interest (ROI)
or at network levels at rest and during a task [2], have shown
dependency of static functional connectivity on smoothing
kernel sizes. A more recent study examined the spatial
smoothing effects on independent component analysis (ICA)-
based task fMRI data and found an increase in the functional
coupling strengths with spatial smoothing [3]. We found a
similar result in resting-state ICA (forthcoming).
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Up to the present, the influence of spatial smoothing
on the dynamic functional network connectivity (dFNC)
of ICA-derived intrinsic connectivity networks (ICNs) have
not been studied. In this study, we aim to examine the
dFNC and meta-state metrics to investigate how smoothing
kernel size impact brain dynamics. By introducing a higher-
dimensional state space, the meta-state approach allows
complex states to overlap in time, thus enabling the
estimation of different measures of neural dynamism [4].
We hypothesized that application of different smoothing
kernel sizes during preprocessing would influence the higher-
dimensional temporal dynamism of functional connectivity
by modifying the resultant windowed connectivity patterns.

II. MATERIALS AND METHODS

A. Data Acquisition and Preprocessing

Resting state fMRI data were collected from 22 healthy
volunteers (12 females, mean age 37.73 years) on a 3.0T
GE scanner using EFGRE3D pulse sequence (TR/TE =
2000/30 ms, FOV = 220× 220 mm2 acquisition matrix =
64× 64, flip angle = 76o, slice thickness = 4 mm, 31 slices).
All MRI scans were performed when subjects were relaxed
with their eyes closed. Informed consent was obtained in
accordance with the local institutional review board approved
protocol. All data passed the strict MR image quality criteria
(mean framewise displacement of head < 0.2 mm). Data
were preprocessed with SPM12 (Wellcome Trust Centre for
Neuroimaging, UK) in a series of steps commonly used in
the field [1]. This included slice time and motion correction,
coregistration, and spatial normalization into the Montreal
Neurological Institute coordinates. Spatial smoothing with
an isotropic Gaussian kernel FWHM 4, 8, and 12 mm were
applied. 8 mm FWHM was chosen as it is the typical value
used in group ICA of fMRI studies. 4 and 12 mm FWHM
were chosen as arbitrary low and high smoothing values.

B. Group Independent Component Analysis

Group ICA with 75-IC decomposition was performed
using the GIFT toolbox (University of New Mexico,
USA) following a well-established ICA resting state
methodology [5]. ICNs were identified based on the
methodology recommended by Allen et al. [5], [6]. 40
ICNs were identified and classified into one of visual (VN),
auditory/language (AUD/LN), sensorimotor (SMN), basal
ganglia (BG), cognitive and attention (CAN), default mode
(DMN), subcortical (SCN), Brain stem (BSN), and cerebellar
(CBN) networks (Fig. 1). The resultant ICNs are very similar
to those found in previous ICA studies [5]–[9].
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Fig. 1. Spatial maps of 40 ICNs from 75-IC decomposition shown on the three most representative slices in neurological convention (right = right)

C. Dynamic FNC and Meta-state Analyses

ICN time-courses were detrended using a third-order
polynomial fit, despiked by replacing outlier time points
with third order spline fit to cleaner neighboring points
using AFNI’s 3dDespike, and filtered using a fifth order
Butterworth filter with a passband of 0.01 to 0.15 Hz.
Time windows were sub-sampled for each subject and
only those with local maxima in functional connectivity
variance were selected for further analysis [6]. dFNC was
computed using a sliding window approach as described
in details in [6]. Briefly, a tapered window was created by
convolving a rectangle of width 30 TRs (60 s, TR = 2 s) with
a Gaussian function (σ = , 3 TRs = 3) that slided in steps
of 1 TR. Optical number of dFNC clusters was estimated
using eight different methods: elbow, gap statistic, Akaı̈ke
information criterion (AIC), Bayesian information criterion
(BIC), Dunn index, Silhouette, Davies Boulder, and Ray Turi
algorithms (Fig 2). Based on the elbow criterion, which is
a more common method, the optimum number of cluster
centroids (dynamic connectivity states) was set to 4. K-means
clustering with cosine for distance method was applied
to windowed covariance matrices. To investigate dFNC
differences between conditions, median of dFNC correlations
across windows were used [6], [9], and differences in
dynamic correlation patterns were evaluated using a paired t-
test set at p < 0.01 corrected for multiple comparisons using
the false discovery rate (FDR). Comparison of correlation
was only conducted if there were subjects with finite
correlations for a given cluster state in each condition [6].

Fig. 2. dFNC optimal number of cluster estimation

Meta-state dynamics method [4] was ran by reducing
the number of windowed FNC correlations to 8 clusters
using four different methods: k-means, PCA, temporal and
spatial ICA (using ICA by entropy bound minimization
method; ICA-EBM). dFNC correlations were factorized into
the continuous loading coefficients and discretized using
quartile discretization. The following metrics were performed
and compared using paired t-test set at p < 0.01: number of
meta-states, changes of meta-states, meta-state span, and the
total distance traveled in the n-dimensional state space.

III. RESULTS
The dynamic states obtained from k-means clustering of

all datasets with the number of cluster occurrences using 100
bootstrap iterations, as well as frequency of each cluster,
mean dwell time in windows and mean of state transition
matrix across 22 subjects are displayed in Fig. 3. Different
state vectors were observed for data preprocessed with
smoothing kernel FWHM 4, 8, and 12 mm (Fig. 4). Cluster
mean correlations for each dataset tests and cluster paired
t-test results (FDR-corrected p < 0.01) are shown in Fig. 5.
Results of meta-state analyses are presented in Table 1.

Fig. 3. A Dynamic states; B Number of cluster occurrences; C frequency,
mean dwell time, and mean of state transition matrix across subjects.
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Fig. 4. State vectors for A 4 mm, B 8 mm, and C 12 mm FWHM.

IV. CONCLUSION

Using a relatively high-level ICA as a data driven
technique, we tested the hypothesis of whether changing
the spatial smoothing FWHM during preprocessing would
influence the dynamics of functional connectivity between
large-scale networks in the brain at rest. Our results suggest
that dFNC are significantly impacted by the size of the
smoothing kernel. Paired t-test at FDR-corrected p < 0.01
between datasets with different smoothing kernels indicated
robust effects (mostly decrease but also some increase) in the
connectivity patterns of almost all ICNs including CANs,
DMN, VN, SMN and SCN with a change in smoothing
kernel size. These effects were particularly pronounced (with
regard to significance and extent) on the dynamic state with
highest number of occurrence (i.e., state 3, 55% occurrence)
implying probable robust effect on the static FNC (which we
analyzed in a separate study). Meta-state analyses with PCA,
ICA and k-means all indicated significant changes in all
metrics. These findings supplement our knowledge regarding
the influence of spatial smoothing on resting-state functional
connectivity. Moreover, they provide further indication of
the importance of evaluating variance associated with
preprocessing steps on analysis outcomes.
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Fig. 5. Significant results showing the effect of smoothing kernel sizes on dFNC corrolations. A S4 – S8, B S8 – S12, and C S4 – S12, where S denotes
smoothing kernel FWHM 4, 8, or 12 mm. A1 Cluster mean correlations of condition S4, A2 Cluster mean correlations of condition S8, A3 Cluster paired
t-test results of S4 – S8. B1 Cluster mean correlations of condition S8, B2 Cluster mean correlations of condition S12, B3 Cluster paired t-test results of
S8 – S12. C1 Cluster mean correlations of condition S4, C2 Cluster mean correlations of condition S12, C3 Cluster paired t-test results of S4 – S12. All
results are shown at FDR corrected-p < 0.01. Number of subjects with finite correlations (n) is also shown for each condition/state. Mean dwell time vs.
cluster states for each tests are shown in the bottom.

3200


