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Abstract— Cell segmentation is a common step in cell
behavior analysis. Reliably and automatically segmenting
cells in microscopy images remains challenging, especially
in differential inference contrast microscopy images and
phase-contrast microscopy images. In this paper, we propose a
deep learning solution combining a Mask RCNN architecture
with Shape-Aware Loss to produce cell instance segmentation.
Our approach outperforms prior works in cell segmentation,
achieving an IOU of 91.91% on the DIC-C2DH-HeLa dataset
and an IOU of 94.93 % on the PhC-C2DH-U373 dataset. Our
framework can calculate cell instance segmentation masks
from both types of microscopy images without any additional
post-processing.

Clinical relevance— The proposed approach produces accu-
rate instance segmentation in Differential Inference Contrast
and Phase-Contrast microscopy images. The segmentation re-
sults can be reliably used in cell behavior analysis and cell
tracking.

I. INTRODUCTION

Image segmentation is the process of labeling pixels in im-
ages by the object or object instances to which they belong,
producing segmentation masks that mark the regions of such
objects or object instances. Cell segmentation usually in-
volves segmenting the entire cell or particular cell structures,
such as the nuclei. Such a task is particularly challenging in
label-free microscopy images such as Differential Inference
Contrast (DIC) images and Phase-Contrast (PhC) images due
to the low contrast between the cells and the background
image pixels. Additionally, since the cells are not labeled
with fluorescence markers, the images’ resolution may be
inadequate.

With the recent advancement in deep learning, Convo-
lutional Neural Networks (CNNs) have shown remarkable
effectiveness in segmentation problems. To have a more
robust feature extraction framework while having a better
handle over pixel localization and the information loss from
upsampling, Ronneberger et al. proposed U-Net[1], an ar-
chitecture that has a contracting path and an expanding path.
The symmetric contracting and expanding paths provide an
efficient way to capture context and local features. The model
reaches an Intersection Over Union (IOU) of 92.03% and
77.56% in producing semantic segmentation for DIC-C2DH-
HeLa and PhC-C2DH-U373 datasets. The model efficacy
inspires other work to use U-Net and post-processing for
producing segmentation masks for particular cell structures
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or cell instance segmentation. Al-Kofahi et al. used U-
Net on their custom PhC dataset to predict cell locations
and nuclei by outputting probability maps that show the
likelihood of parts being cell nuclei or cytoplasm [2]. The
probability maps are then used to generate seeds for the
watershed to produce segmentation results. Lux and Matula
(MU-Lux-CZ) also utilized U-Net on the DIC-C2DH-HeLa
dataset to produce markers representing approximate loca-
tions and shapes of the cells [3]. The markers go through
watershed transform in post-processing and produce cell
instance segmentation masks, achieving an IOU of 86.3%.
To further improve model performance, Pena et al. (CALT-
US) proposed using a novel loss function that combines
Youden’s J statistic regularization and cross-entropy in U-
Net to produce semantic segmentation, and their framework
produces instance segmentation using a probabilistic post-
processing [4]. They achieve high segmentation accuracy, an
IOU of 87% and 92.7%, for DIC-C2DH-HeLa and PhC-
C2DH-U373 datasets, respectively. Although the previous
models are effective, they require post-processing to generate
the final segmentation results, which can be computationally
complex and inefficient.

In this work, we propose Mask RCNN (Region Based
Convolutional Neural Network) deep architecture to produce
cell segmentation that requires no extra post-processing
steps. We use our Shape-Aware Loss, a distance-based pixel-
wise weighted cross-entropy loss, to help the model better
learn the segmentation boundaries. Our segmentation accu-
racy for both datasets outperforms all existing models for
the two datasets in Cell Segmentation Benchmark[5]. We
describe our approach and demonstrate our results in the
later sections of this paper.

II. DATASET

We train our model using the DIC-C2DH-HeLa dataset
and the PhC-C2DH-U373 dataset from the ISBI Cell Track-
ing Challenge [6]. The DIC-C2DH-HeLa dataset contains
two time-lapse video sequences of 84 frames, for a total
of 168 frames of DIC microscopy images of HeLa cells
on flat glass. The PhC-C2DH-U373 dataset contains two
time-lapse video sequences of 115 frames, for a total of
230 PhC microscopy images of Glioblastoma-astrocytoma
U373 cells on a polyacrylamide substrate. Each frame has
a corresponding instance segmentation mask, and each cell
has a different instance ID. Figure 1 shows examples of
raw image and ground truth segmentation masks in the two
datasets.
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For each dataset, we shuffle the images and split them
into a training set and a validation set. For DIC-C2DH-
HeLa dataset, the training set consists of 134 images, and
the validation set consists of 34 images. For PhC-C2DH-
U373 dataset, the training set consists of 184 images, and
the validation set consists of 46 images.

Fig. 1. DIC-C2DH-HeLa and PhC-C2DH-U373 Raw Images and Ground
Truth Segmentation Masks

III. METHODOLOGY

We use Mask RCNN as our base architecture to di-
rectly produce instance segmentation. We apply Distance
Transform to compute a weight map and incorporate the
weight map in our Shape-Aware Loss. The model produces
final instance segmentation masks, and no additional post-
processing is required in our method, differentiating our
method from other segmentation paradigms in the Cell
Tracking Challenge[6].

A. Shape-Aware Loss

Binary cross-entropy (BCE) loss is a typical loss function
used in image segmentation. However, when the proportion
of foreground pixels to background pixels is significantly
imbalanced, the model may not be able to segment the under-
represented pixel class. Additionally, in dense environments
where segmentation masks are very close to one another, the
model may not correctly segment the boundaries.

Focal Loss is proposed to handle situations where the
proportion of foreground to background pixels is highly
imbalanced [7]. Focal Loss modifies BCE loss to increase
relative loss when pixels are incorrectly labeled, pushing the
model to update weights to prioritize correctly classifying
the incorrect pixels. Focal Loss shows excellent efficacy
in improving model results on images with significantly
imbalanced pixel classes. However, because it does not
explicitly emphasize mask boundaries or the small gaps
between cells, Focal Loss may not push the model to
yield accurate segmentation masks in dense environments,
especially when mask boundaries are complex.

Using weight maps to capture the shapes of segmentation
masks in pixel-wise weighted cross-entropy loss could help
the model learn complex cell boundaries. The effectiveness
of this approach is demonstrated by Ronneberger et al. in
U-Net [1], and their weight map is computed using a pixel’s
distance both to the nearest cell boundary and to the second-
nearest cell boundary. We compute a weight map based on
each pixel’s distance to the nearest cell boundary to reduce
computational complexity. The pixel-wise weighted cross-
entropy loss is defined as:

L = −
n∑
t

wt × log(pt) (2)

where wt is the value of pixel t on the weight map and pt
is the softmax at pixel t.

The weight map intendeds to capture pixel importance
from two aspects: pixel class (i.e., background or foreground)
and pixel distance to the closest boundary. We compute the
weight map for each ground truth segmentation mask using

wt = wc + α× exp(−D
2
t

2σ2
) (3)

where wc ∈ R+ is a parameter to adjust the imbalance
between the number of foreground and background pixels.
The parameter is set to 1 when pixel t is a background pixel,
and is set to the ratio between the total number of background
pixels and total number foreground pixels when pixel t is a
foreground pixel. Dt ∈ R+ is the distance from pixel t to its
nearest cell boundary. α ∈ Z is a parameter that controls the
relative weight between the pixel class-based term and the
pixel distance-based term. σ ∈ Z is a parameter that controls
the gradual decrease of the distance-based term in the wt.
We illustrate weight maps with different σ in Figure 2 and
weight maps with different α in Figure 3. We chose these
hyper-parameters experimentally and set α = 10 and σ = 5.

Fig. 2. Examples of weight maps with different σ values.
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Fig. 3. Examples of a weight maps with different α values.

B. Deep Learning Architecture

We use Mask RCNN architecture [8] to produce instance
segmentation masks. The architecture uses a Region Proposal
Network (RPN) to propose regions that are likely to contain
an object. After the RPN, the model has two branches, one
for predicting object class labels, object class scores, object
bounding boxes, and the other for predicting object segmen-
tation masks. To use the model to predict cell segmentation
masks, we change the number of object classes in both
branches to 2(i.e., cell and background) to reflect the nature
of our task.

To increase the training efficiency, we initialize the model
with Mask RCNN pre-trained weights, use Kaiming normal
weight initialization [9] to initialize weights in the modified
box branch and mask branch, and use Adam optimizer to
optimize mini-batch gradient descent. In our experiment, we
set the learning rate in the Adam optimizer to 0.0005. We
also apply a learning rate scheduler to decay the learning rate
by 0.1 every three epochs to avoid overshooting the optima.

Additionally, to explore Focal Loss and Shape-Aware
Loss’s efficacy compared to the BCE loss, we train three
models with U-Net architecture on each dataset. We initialize
the weights with Xavier normal initialization [10] and use
Adam optimizer with the learning rate set to 0.001.

IV. EXPERIMENTS

A. Model Training

We train three Mask RCNN models with three different
loss functions for each dataset: BCE loss, Focal Loss, and
Shape-Aware Loss. We use random horizontal flip to aug-
ment the images and their masks during the training phase
to increase robustness. We use early stopping in the training
process to avoid overfitting. Additionally, we train three U-
Net models using three different loss functions to compare
the performances with those of the Mask RCNN models.

TABLE I
CELL SEGMENTATION EXPERIMENT RESULTS AND COMPARISON

Architecture Loss Function DIC-
C2DH-HeLa

PhC-
C2DH-U373

Mask RCNN Shape-Aware Loss 0.919* 0.949*
Mask RCNN BCE Loss 0.905 0.948
Mask RCNN Focal Loss 0.918 0.920

MU-Lux-CZ [3] Weighted MSE Loss 0.863 -
CALT-US [4] Custom Loss Function 0.870 0.927

U-Net BCE Loss 0.663 0.566
U-Net Focal Loss 0.670 0.597
U-Net Shape-Aware Loss 0.704 0.820

B. Results and Discussion

We evaluate our model results on the respective validation
sets with IOU, which is Segmentation Accuracy as specified
in the Cell Tracking Challenge Evaluation Methodology
[11].IOU is a metric based on the Jaccard Similarity Index
and is described as:

IOU =
|A ∩B|
|A ∪B|

(4)

where A denotes the predicted segmentation mask and B
denotes the ground truth segmentation mask. The Mask
RCNN experiment results are shown in Table I.

The best results, achieved previously by Pena et al. (CALT-
US), reach an IOU of 0.870 and 0.927 for DIC-C2DH-HeLa
and PhC-C2DH-U37, respectively [4], and we achieve an
IOU of 0.919 for the DIC-C2DH-HeLa dataset and 0.949
for the PhC-C2DH-U37 dataset. Based on the results, we
conclude that Shape-Aware Loss significantly outperforms
BCE Loss and Focal Loss for the cell segmentation task.

Fig. 4. Instance segmentation results for a Sample from DIC-C2DH-HeLa
dataset.

Figure 4 shows that the cells in DIC-C2DH-HeLa are
densely populated but that Mask RCNN effectively produces
instance segmentation for cells in the image. Comparatively,
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results from the model using Shape-Aware Loss have more
distinctive cell boundaries. Figure 5 illustrates segmentation
results for the PhC-C2DH-U37 dataset. The two left-most
cells are segmented as one cell in both BCE loss and Focal
Loss, but they are correctly segmented as separate cells in
Shape-Aware Loss. Figure 6 shows the segmentation results
from different loss functions in the U-Net experiments. The
Shape-Aware Loss produces more accurate cell segmentation
boundaries, despite the complexity in cell features and the
shape of the cells.

Fig. 5. Instance segmentation results for a sample from PhC-C2DH-U373
dataset.

Fig. 6. Cell segmentation results using U-Net Architecture based on
Different Loss Function

V. CONCLUSION AND FUTURE WORK

This paper proposes a framework for cell segmentation
in DIC and PhC microscopy images using a combination
of Mask RCNN and Shape-Aware Loss. Such a framework
can predict cell instance segmentation masks from images
without additional post-processing. Since the Shape-Aware
Loss only considers a pixel’s distance to the closest cell
boundary, computing weight maps using Distance Transform
is a manageable and straightforward process. Additionally,
we show that the simple Shape-Aware Loss effectively
improves segmentation performance in both Mask RCNN
and U-Net models.

In the future, we will work on proposing a unified frame-
work for analyzing different types of microscopy images
so that effective cell segmentation can be done irrespective
of the microscopy technique. To achieve a unified solution,
we are interested in learning whether using an ensemble
framework could capture a variety of different appearance
features. Since our current models give accurate instance
segmentation results, we are also looking into developing
a reliable cell tracker framework on top of our existing
segmentation framework.
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