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Abstract— Surface EMG (sEMG) signals are useful for es-
timating the motion or exercise of users. Wireless-type sensor
electrodes, which are placed on multiple parts of the body and
send the measured signals to a server, have recently become
commercially available. With many estimation algorithms, the
relationships between the sensor IDs and the body parts
they are placed on (ID configuration) are expected to be
fixed between the calibration and estimation phases. If the
ID configuration is changed after the calibration phase, the
estimation accuracy tends to dramatically decrease. Since it
is inconvenient for users to check the ID configuration every
time, we developed a method to correct the electrode ID
configuration on the basis of the distribution of sEMG features.
Using open data, we investigated the feasibility of our method
by shuffling the order of sEMG signals. The results showed that
the method was able to correct the ID configuration and restore
the estimation accuracy to close to that of the calibration.

I. INTRODUCTION

Surface EMG (sEMG), which occurs when the muscles
shrink, is a physiological signal measured from the surface
of the skin. Past studies have proposed methods that estimate
the motion or exercise of users on the basis of the sEMG
signals [1], [2]. Obtaining users’ motion is useful for several
applications such as lifelogging and robot control. If the
electrodes are placed the same as they are in the calibration,
high estimation accuracy is expected.

A Garment-type physiological signal measurement system,
which does not require users to put electrodes, is one of
the promising approaches[3]. However, there is noise in the
measured signals during motions because electrodes are not
fixed on the skins. Therefore, a wireless-type sensor system
such as the Trigno Avanti sensor (Delsys Inc.), which is
attachable on the skins, is another promising approach. For
daily measurement, users need to attach the sensor electrodes
at the start of use and then take them off at the end. In
order to ensure high accuracy, the electrodes need to be
placed at the same location for both the calibration and the
estimation. However, sometimes subtle displacement occurs
after the calibration phase even if the same electrode is
placed on the same muscle, which leads to a decrease in
estimation accuracy. Several studies have examined how to
avoid such displacement [4], [5], and recently it has become
more feasible.

However, there is another placement drawback when it
comes to the wireless-type sensor electrodes. Each sensor
electrode in the system is assigned an ID that enables it
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to communicate with the server. While it is assumed that
each electrode at the same location has the same ID between
the calibration and estimation phases, past research has
shown that displacement tends to occur on the surface of a
body part. This is problematic because, in many estimation
algorithms, the relationship between the sensor ID and the
body part it is placed on (ID configuration) is expected to
be fixed between the calibration and estimation phases. To
obtain high estimation accuracy, in addition to the placement,
the ID configuration of each electrode must be matched
between the two phases. However, it is inconvenient for
the user to check the IDs of each electrode one by one
and make adjustments. Re-calibration at the start of use is
also considered bothersome for users. These system-derived
drawbacks may discourage the use of such wireless-type
sensor electrodes in daily measurement.

The ideal scenario is that users will simply pick up the
sensor electrodes without having to check the IDs and then
place them onto the desired muscle or body part. The purpose
of this study is to correct the ID configuration automatically
so that users do not have to check or adjust it. During the
correction of the ID configuration and estimation of users’
motion, the true label of users’ motion is not available,
so the requirement is to correct the ID configuration by
using the sEMG features obtained from randomly shuffled
ID configurations without labels of motion. Our contributions
are (1) proposing a novel way to correct the ID configuration
of the electrodes on the basis of the distribution of sEMG
features, (2) investigating the feasibility of our method by
using the Ninapro database that includes sEMG data from
multiple hand motions of healthy subjects [6], [7].

II. METHOD

Fig. 1 shows the overview of the proposed method. The
goal is to calculate a transformation matrix M̂ to correct
the ID configuration. In the case shown in Fig. 1, the
order of measured signals, (e1, e2, e3, e4), is based on the
ID configuration. However, the placement of the electrodes
(ID configuration) is different between the calibration and
estimation phases. For example, e1 (red circle) in the es-
timation phase is placed at the e4 (black circle) location
in the calibration phase. The signals of e1 between the
two phases are different because the location is different.
In terms of correction, the signal of e3 (blue circle) in the
estimation phase needs to be used as the signal of e1 in the
calibration phase of the ID configuration. Therefore, we use a
transformation matrix M̂ for correcting the ID configuration,
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Fig. 1. Overview of proposed method. The circles show the placement of electrodes, and different colors (red, blue, green, and black) indicate each
ID. In the calibration phase, the sEMG signals of motions to be estimated are measured and an estimation model is constructed at the ID configuration.
The ID configurations are assumed to be different between the calibration and estimation phases due to relocation of the electrodes. The proposed method
calculates a transformation matrix to correct the ID configuration in the estimation phase so that it matches that of the calibration phase.

as 



e1cal
e2cal
e3cal
e4cal



 = M̂





e1est
e2est
e3est
e4est



 (1)

M̂ =





0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0



 (2)

where e1cal, e
2
cal, e

3
cal, and e4cal are the signals measured in

the calibration, and e1est, e2est, e3est, and e4est are the signals
measured in the estimation. The proposed method calculates
the transformation matrix M̂ on the basis of the input sEMG
signals whose motion labels are unknown.

To correct the ID configuration, our method performs
signal processing consisting of the following five steps for
each sEMG measurement.

• Measurement of sEMG
• Calculation of features
• Calculation of temporary transformation matrix M for

input sEMG feature x
• Update of transformation matrix M̂
• Estimation of label of motion
Measurement of sEMG: sEMG signals are measured

through the wireless-type nch electrodes. The electrodes are
placed at the same position as the calibration but the ID
configuration is randomized. A 10–500 Hz bandpass filter is
applied to all measured signals. As root mean square (RMS)
is a major component for estimating motion, RMS values
are calculated from each measured sEMG signal.

Calculation of features: Statistical features are a major
component of EMG-based motion estimation [1]. In this
paper, we calculate six types of statistical features—
median, average, std,max,min, andptp—from each
RMS of the electrode signal. median is the median value,
average feature is the averaged value, std is the value of
standard deviation, max is the maximum value, min is the
minimum value, and ptp is the range of values (maximum
- minimum) in the extracted signals. Several calculation

window sizes have been investigated for estimating motions
[8], [9], and in this study, the calculation window with a
duration experimentally set to 2.0 [s] is applied to each
signal overlapping with 1.0 [s] based on the previous
research [8]. Each feature is calculated from each extracted
signal based on the extraction window.

An sEMG feature X = [xf ] f ∈
[median, average, std, amax, amin, ptp] is calculated
on the basis of the input sEMG. An element of X whose
feature is f is expressed as

xf = [xf
q ] q = (1, · · · , nch) (3)

where xf
q is feature f of the signal measured from the

electrode whose ID is q.
Calculation of transformation matrix M for input

sEMG feature X: Algorithm 1 expresses the calculation
of M on the basis of the input sEMG features. M is a
plausible matrix to transform the order of the electrode IDs
of sEMG features X . The dimension of M depends on the
number of measured sEMG channels nch, and is (nch×nch).
In every row and column of M , one element holds 1 and
the others hold 0. In the initialization, all elements of M are
set to 0.

In the calculation phase, the distribution of sEMG feature
X is compared to that of training datasets assuming each
label in the training data as the label of the input sEMG
feature X . In the training dataset, pairs of sEMG feature
d and label l are stored. There are multiple sEMG features
whose labels are the same in the training dataset. df

l,i is
the feature f of the i-th data in the dataset whose label
is l in the training data, and holds nch feature values, the
same as xf . Function arg min

m
|df

l,i − mxf | returns the

transformation matrix mf
l,i, which makes the distribution

of the vector xf close to df
l,i based on descending sort.

Function g(df
l,i,m

f
l,ix

f ) returns the mean absolute error
between df

l,i and mf
l,ix

f . c is the data index of the training
dataset whose label is l, and is the index that minimizes
the mean absolute error of df

l,i and mf
l,ix

f in terms of
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Algorithm 1 Calculate Transformation Matrix M

Input: sEMG features X
Output: Transformation Matrix M

Initialization M :
for Each element M in M do

M ← 0
end for

Calculation M :
for l = 1, · · · , L do

for f ∈ feature types do
for i = 1, · · · , nl do

mf
l,i = arg min

m
|df

l,i −mxf |
end for
c = arg min

i∈(1,··· ,nl)
g(df

l,i,m
f
l,ix

f )

l̂ = h(mf
l,cx))

if l̂ = l then
M = M +mf

l,c
end if

end for
end for

Nomarlization M :
for j = 1, · · · , nch do

for k = 1, · · · , nch do
M [j][k]←M [j][k]/sum(M [j])

end for
end for

feature f . The transformation matrix mf
l,c is the candidate

for the transformation matrix M . h(mf
l,cx) returns the

estimated label l̂. If the estimated label l̂ is the same as l,
the candidate transformation matrix mf

l,c is considered as a
valid transform matrix and is added to transformation matrix
M . This calculation is conducted for each label l and each
feature f ∈ [median, average, std, amax, amin, ptp].

At the end of calculation, transformation matrix M is
normalized so that the elements in each row fit from 0 to 1
through the normalization calculation. M [j][k] is the element
of the j-th row of the k-th column in M .

Update of transformation matrix M̂ : After the calcula-
tion of transformation matrix M , the transformation matrix
M̂ that was held in the system is updated as

M̂ = M̂ + αM (4)

where M̂ is the transformation matrix over time-series
sEMG features, and α is the mixing ratio of M , which
is calculated from the most recent input sEMG features.
In order to converge the transformation matrix M̂ , α is
also decayed in accordance with the input of data. The
initial α and decay ratio are tentatively set to 0.2 and 0.98,
respectively.

Fig. 2. Placement of the 12 electrodes on the arm. The electrode on the
finger flexor is occluded by the arm and therefore not visible in this image.
Details are written in [6].

To make a transformation matrix for correcting the ID con-
figuration, all elements must be discrete values. Moreover,
one element in each row and column must be set to 1, and
the other elements must be set to 0. However, the elements
in the updated transformation matrix M̂ hold continuous
values. Therefore, exclusive normalization is conducted. Our
idea here is to extract an element whose value is maximum
in M̂ and set it to 1, and set the other elements in the
same row and column to 0. By repeating this calculation,
the transformation matrix M̂ is determined.

Estimation of label of motion: The support vector ma-
chine (SVM) is a major algorithm for estimating motions
based on sEMG features [8], [10], [11]. We construct an
SVM-based estimation model using a training dataset and
then use the model as h(mf

l,cx) in Algorithm 1. The motion
label is then estimated by calculating h(M̂x).

III. EXPERIMENT

We investigated the proposed method using Ninapro
database2 (an open database), which includes 12 channels of
sEMG data of multiple hand motions from multiple subjects
[6]. Fig. 2 shows the electrode placement. This database was
constructed through experiments based on approval by the
Ethics Commission of the Canton Valais (Switzerland). In
this experiment, we used the data of 40 subjects and 17
kinds of motions (Exercise A). Each motion was repeated
six times. The first three samples of each motion were used
as the training dataset, and the following three were used as
the test dataset.

The SVM-based motion label estimation model was cal-
culated using the training dataset. As for the test data, the
order of signals was shuffled so that the ID configuration
was different from the training dataset, and the order of the
labels was also shuffled to consider the effect of task order.
The features were calculated as described in Sec. II from
the training and test datasets. The test dataset was used for
evaluating the estimation accuracy.

The objective of the proposed method is to restore the
estimation accuracy to that of the calibration. A restoration
ratio rcorrected was used for the validation of the proposed
method using the accuracy through the ID configuration
correction, and the ratio rbaseline based on the accuracy
without ID configuration correction was used as a baseline.
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Fig. 3. An example of time-series number of wrong electrodes.

Restoration ratio rcorrected and rbaseline were formulated by

rcorrected =
1

40

40∑

s=1

accscorrected
accsoriginal

(5)

rbaseline =
1

40

40∑

s=1

accsbaseline
accsoriginal

(6)

where accscorrected and accsbaseline are the accuracy with and
without the proposed method of s-th subject, respectively.
accsoriginal is the accuracy under the same ID configuration
as the calibration of s-th subject. Restoration ratio rcorrected
and rbaseline were calculated ten times by shuffling the order
of the signals.

IV. RESULTS

TABLE I
AVERAGE RATIO AGAINST CALIBRATION PLACEMENT.

Without correction With correction(proposed)
0.196 (std:0.0096) 0.966 (std:0.0032)

Table. I shows the restoration ratio of the proposed method
and baseline. A Wilcoxon rank sum test revealed a significant
difference between the ratios (p-value: 0.00195). Fig. 3
shows an example of temporal characteristics of the number
of wrong electrodes. This number in each calculation was
calculated for each subject. The blue line in the figure
indicates the average number of wrong electrodes among
subjects. The red shaded area indicates the standard deviation
of each calculation.

V. DISCUSSION

From our comparison of the restoration ratios (Table.
I), we can see that the proposed method corrected the ID
configuration accurately and restored the estimation accuracy
to that under the ID configuration in the calibration. The
average restoration ratio (0.966) of the proposed method
should be feasible for daily measurement if the accuracy
of the calibration is sufficient. As shown in Fig. 3, the
wrong number of electrodes was close to 0. As for the time-
series characteristic, it did not decrease linearly but tended

to decrease rapidly in the first 10 to 20 calculations. This
characteristic is expected to lead to a rapid improvement in
estimation accuracy immediately after the start of use.

In this experiment, the labels of the motion were the same
between the training and test datasets. This means that the
proposed method works if the labels in the training dataset
cover the motions in practical use. However, we did not
investigate cases where the motion labels were included in
the test dataset but not the training dataset, nor when the
motion labels were included in the training dataset but not
the test dataset. This is a limitation of the current study
and should be investigated in future work. In this paper, we
investigated the proposed method by using a database that
includes the sEMG data of upper limbs. The applicability
to other body parts should also be investigated. There is
also another limitation in that we only investigated the
proposed method on the basis of statistical features. As
frequency features also contribute to the motion estimation,
the applicability to frequency features should be evaluated
in further experiments.
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