
Dual Encoder Attention U-net for nuclei segmentation

Abhishek Vahadane, Atheeth B, Shantanu Majumdar
Rakuten Institute of Technology India, Rakuten, Inc.

Abstract— Nuclei segmentation in whole slide images (WSIs)
stained with Hematoxylin and Eosin (H&E) dye, is a key
step in computational pathology which aims to automate the
laborious process of manual counting and segmentation. Nuclei
segmentation is a challenging problem that involves challenges
such as touching nuclei resolution, small-sized nuclei, size, and
shape variations. With the advent of deep learning, convolution
neural networks (CNNs) have shown a powerful ability to
extract effective representations from microscopic H&E images.
We propose a novel dual encoder Attention U-net (DEAU)
deep learning architecture and pseudo hard attention gating
mechanism, to enhance the attention to target instances. We
added a new secondary encoder to the attention U-net to
capture the best attention for a given input. Since H captures
nuclei information, we propose a stain-separated H channel
as input to the secondary encoder. The role of the secondary
encoder is to transform attention prior to different spatial
resolutions while learning significant attention information.
The proposed DEAU performance was evaluated on three
publicly available H&E data sets for nuclei segmentation from
different research groups. Experimental results show that our
approach outperforms other attention-based approaches for
nuclei segmentation.

Keywords− Dual Encoder, Nuclei segmentation, Attention.

I. INTRODUCTION

Automated detection of cell nuclei in H&E [1] stained
whole slide images (WSIs) is a necessary step in digital
pathology since manual examination of WSIs is tedious
and prone to inter and intra-observer variations [2]. Fig. 1
shows the inherent variations in size, opacity, and color of
nuclei which pose challenges in nuclei segmentation. Several
different techniques were proposed. It includes techniques
such as watershed segmentation, active contour, level-sets,
snake energy optimization, morphological processing and
their variants [3], [4], [5], [6], [7], [8], [9], [10]. However,
these techniques cannot generalize on the challenges dis-
cussed in Fig. 1.

In recent times, deep learning techniques have been shown
to outperform energy-based models for the problem of nuclei
segmentation. CNN3 [11] proposed a three-class pixel classi-
fication using a convolutional neural network (CNN) where
each pixel in the input image has a predicted probability
score for three classes: nucleus inside, outside, and boundary.
The nucleus inside and boundary probability maps were
further used simultaneously to obtain robust nuclei segmen-
tation. Inspired from fully convolutional Networks, FCN8
[12] and U-Net [13] became popular for many medical image
segmentation problems. U-net consists of an encoder-decoder
setup with skip connections from the encoder to the decoder.
The skip connections enable access to low-high level features
from the encoder to the decoder. However, it remains difficult
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Fig. 1. The inherent variations exhibited by nuclei in H&E images.

to prune the skip connections to capture features related to
small objects like nuclei. To tackle this problem with small
objects, attention gates(AGs) were integrated with standard
CNN models[14].

Attention gates were initially used in sequence modeling
in tasks such as Natural Language Processing and machine
translation. In machine translation [15], attention is used to
weigh each of the input sequence’s hidden states and provide
it as an additional input to each output sequence’s hidden
state. Grid-based attention maps have gained popularity in
computer vision to improve model performance and are
categorized as either hard and soft. Hard attention [16] is
non-differentiable and relies on highly intractable techniques
for parameter update while soft attention like the one used
in [14] has no explicit way to control the regions to which it
pays attention. When dealing with small objects like nuclei,
such unconstrained attention maps can result in a large num-
ber of false negatives [17]. Moreover, in backpropagation,
the gradients with respect to the output of attention gates
are again multiplied by the attention coefficients. In theory,
it is supposed to allow shallow layers to receive parameter
updates from only relevant features, but poor attention maps
can harm the overall performance of the model. We propose
to improve the attention capturing capacity of FCNs to boost
nuclei segmentation performance.

Our goal is to tackle the challenges depicted in Fig.1
using a deep learning-based approach. The core idea of grid-
based attention is to learn attention coefficients that identify
salient image regions, objects, and spatial arrangements
of different objects which reduce the total network loss.
Attention mechanism like AGs prunes the feature responses
so that relevant activation to the specific task is preserved.
We propose a novel network with AGs to improvise the
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attention mechanism of the entire network. As attention U-
net was demonstrated to improve performance through AGs,
we demonstrate the capability of proposed work on attention
U-net. In this paper, our contributions are as follows:

1) Proposed a dual encoder architecture that encodes
attention prior information. We also suggest a way to
generate attention prior to input H&E images.

2) A novel attention skip module (ASM) that utilizes
both attention prior and input feature maps to enhance
segmentation performance.

Extensive experiments show that the proposed architecture
improves the attention-catching capability and performance
of the network.

II. METHODOLOGY

In this section, we present an end-to-end deep learning
framework to segment nuclei instances accurately, given
H&E histology images. The block diagram of the framework
is shown in Fig 2. It consists of pre-processing step to
generate the attention prior from H&E histology images, a
deep learning architecture that incorporates a novel attention
mechanism, and a post-processing set-up to produce robust
nuclei segmentation. In order to separate touching and over-
lapping nuclei, we employ a contour based approach [11],
[18] to predict the nuclei and its corresponding boundary
probability maps. In the post-processing set-up, the predicted
nuclei and boundary probability maps are used to further
refine the nuclei segmentation.

Attention Prior: We proposed to use the Hematoxylin (H)
channel optical density in H&E image as attention prior as
it stains the nuclei. Sparse non-negative matrix factorization
(SNMF) [19] method was used to deconvolve and normalize
the H&E stained WSIs into H and E optical density maps,
of which H map can be used for generating attention prior.

Dual encoder Attention U-net (DEAU): As shown in
Fig. 3, we incorporated a novel Attention Encoding Path
(AEP) to a conventional U-Net architecture, which takes the
attention prior as input and learns meaningful features for
segmentation. The dimensions of the new encoding path is
same as the other trivial encoding path. The trivial encoding
path is given an H&E input image. The AEP has attention
prior as the input. The feature maps obtained from the trivial
encoding path and AEP are fed to the attention skip module
(ASM) at different depth of the network. The proposed
Attention Skip Module (ASM) is shown in the Fig. 4. It
is a modification of the gating mechanism proposed in [14].
At each spatial resolution of the skip connection, the module
accepts the processed attention feature map gl ∈ RFH and
H&E feature map xl ∈ RFHE feature map as its two inputs.
These vectors are translated to an intermediate dimension
Fint by 1× 1 convolution with kernels Wx and Wg . This is
followed by element wise addition, non linear transformation
through ReLU function σ1 and another 1× 1 convolution
operation with kernel (Wint), before passing the output to
the sigmoid function σ2. This generates attention coefficients
αl ∈ [0, 1]. The final output of the module x̂l is obtained by
element-wise multiplication of αl with xl, followed by a final

1× 1 convolution. As each of the convolution operations
have associated parameters that are updated during back
propagation by the gradients, the attention mechanism can
be called as pseudo hard gating. At a skip connection l, the
attention coefficient is given by Equation 1 where b1 and b2
are bias terms.

αl = σ2
(
WT

int

(
σ1

(
WT

x xl +WT
g gl + b1

))
+ b2

)
(1)

Post-Processing: The raw output of the DEAU consists
of nuclei prediction In ∈ RH×W , and boundary prediction
Ib ∈ RH×W . We use the post-processing logic of [11] to
semantically segment the nuclei as well as separate touching
nuclei. In the first step, In and Ib are thresholded using
empirically determined thresholds 0.45 and 0.3 respectively.
The binary boundary map Îb, is subtracted from binary nuclei
map În, resulting in segregated nuclei instance map zi.Then,
we generate an energy landscape in the form of a distance
map d for each individual connected component instance.
where the distance of each pixel to background is calculated.
To generate markers Im of nuclei, we further erode zi.
Utilizing the distance map and the markers of segregated
nuclei, we employ marker-controlled watershed [19] and get
an N-array mask of nuclei instances.

III. EXPERIMENTS AND RESULTS

A. Datasets

Few research groups have already open-sourced nuclei
segmentation datasets such as Kumar et.al [11], CoNSep [20]
and CPM-17 [21]. Kumar et.al [11] dataset contains 21,000
annotated nuclei from different organ tissue H&E images
such as prostate, colon, breast, kidney, prostate, liver, bladder,
and stomach. CoNSep [20] is focused on colon tissue H&E
stained images, however, images were selected owing to
variability and diversity of tissue structure. The CPM-17 [21]
was made available as a part of the MICCAI2017 challenge
and has tissue images of patients with Non-Small Cell Lung
Cancer (NSCLC), Head and Neck Squamous Cell Carcinoma
(HNSCC), Glioblastoma Multiforme (GBM), and Lower
Grade Glioma (LGG) tumors. We validate the proposed
DEAU on these three datasets and also compare DEAU with
U-net based approaches.

B. Implementation Details

Fixed-size patches of spatial dimension 256× 256 were
randomly extracted from each data-set after performing
relevant zero paddings. To increase the data samples and
variability, we dynamically augment the patches. Augmenta-
tion includes random horizontal flip, Gaussian blur with unit
sigma, median blur with a kernel size of 3× 3 and random
rotation between 60◦ to 120◦. Proposed DEAU framework
was implemented in the open-source deep learning library
PyTorch 1.3.1. The parameters of the model were initialized
as sampled values drawn from a normal distribution with zero
mean and unit standard deviation. The number of training
epochs for each experiment was fixed to 80 and we chose
Adam optimizer. The initial learning rate was 10−04, which
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Fig. 2. The complete framework of the proposed nuclei segmentation approach.

TABLE I
RESULTS OF COMPARATIVE EXPERIMENTS CARRIED OUT ON KUMAR, CONSEP AND CPM-17 DATA SETS.

Kumar CoNSep CPM-17
Methods Dice AJI DQ SQ PQ Dice AJI DQ SQ PQ Dice AJI DQ SQ PQ
Cell Profiler [22] 0.623 0.366 0.423 0.704 0.300 0.434 0.202 0.249 0.705 0.179 0.570 0.338 0.368 0.702 0.261
QuPath [23] 0.698 0.432 0.522 0.679 0.351 0.588 0.249 0.216 0.641 0.151 0.693 0.398 0.320 0.717 0.230
FCN8 [12] 0.797 0.281 0.434 0.714 0.312 0.756 0.123 0.239 0.682 0.163 0.840 0.397 0.575 0.750 0.435
U-Net [13] 0.758 0.556 0.691 0.690 0.478 0.724 0.482 0.488 0.671 0.328 0.813 0.643 0.778 0.734 0.578
DIST [18] 0.789 0.559 0.601 0.732 0.443 0.804 0.502 0.544 0.728 0.398 0.826 0.616 0.663 0.754 0.504
CNN3 [11] 0.762 0.508 - - - - - - - - - - - - -
Attention U-Net [14] 0.786 0.416 0.459 0.690 0.319 0.831 0.494 0.538 0.743 0.402 0.846 0.592 0.746 0.781 0.587
Micro-Net [24] 0.797 0.560 0.692 0.747 0.519 0.794 0.527 0.600 0.745 0.449 0.857 0.668 0.836 0.788 0.661
Hover-net [20] 0.826 0.618 0.770 0.773 0.597 0.853 0.571 0.702 0.778 0.547 0.869 0.705 0.854 0.814 0.697
Dual Encoder 0.810 0.516 0.594 0.737 0.440 0.822 0.485 0.492 0.744 0.368 0.857 0.627 0.773 0.787 0.609

Fig. 3. Schematic of the proposed DEAU with the Attention Encoding
Path (AEP) and the novel attention skip module.

Fig. 4. Schematic of the proposed Attention Skip module (ASM). Input
features xl are scaled with attention coefficients αl computed in ASM.

reduces by a factor of 10−1 when the validation dice score
does not change across four epochs.

C. Evaluation metrics

We adopt the typical metrics uses to measure segmentation
performance. Dice coefficient (DICE) between two sets X
and Y is defined as 2×(|X∩Y |)

(|X|+|Y |) Aggregated Jacquard Index
(AJI) [11] on the other hand computes the ratio of an
aggregated intersection cardinality and an aggregated union
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Fig. 5. The attention maps2 at spatial resolutions 32× 32 and 64× 64,
scaled up for visualization. While the actual weight-age given to different
regions in the slide images are irrelevant, the uniformity with which they are
assigned is important. It can be seen that in the case of pseudo-hard attention
maps the weight-age assigned to nuclear regions are near homogeneous, as
compared to their counterparts in grid-based approach.

cardinality between X and Y . Detection Quality (DQ)is
the object level F-1 score given by, 2×(|TP |)

(2|TP |+|FP |+|FN |) . For
every (x, y) pair in (ground truth, prediction), Segmentation
Quality (SQ) is given by

∑
(x,y)∈TP IoU(x,y)

|TP | . Panoptic quality
(PQ) [25] is the final metric used, and it is the product of
DQ and SQ.

D. Baseline Methods

FCN8: We use the popular FCN8 [12] as a baseline
to predict nuclei and boundary probability maps. The pre-
dictions are fed to the post-processing set-up of [20] to
generate N-array masks. U-Net (2-class): Like the previ-
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ous approach, U-Net architecture [13] predicts 2 output
classes (nuclei,boundary). To generate instance maps from
raw prediction we follow the same post-processing procedure
as above. CNN3: The approach in [11] carries out pixel-
level classification of input H&E image. Among the deep
learning approaches compared, this is the only non fully
convolutional network. Attn U-Net: An extension to the U-
Net was proposed in [14]. The changes include a modifi-
cation to the skip connections, to incorporate a grid-based
attention mechanism. We also compare with other methods
and popular image analysis software such as Cell Profiler
[22] and QuPath [23].

E. Experimental Results

The quantitative comparison of DEAU with contemporary
architecture is shown in Table I. We trained Attention U-
net and DEAU on three data-sets discussed previously. The
results of U-net, FCN8, DIST, Micro-Net, and Hover-net
were taken from [20]. As shown in Table I, proposed DEAU
outperforms attention U-net in almost all the metrics which
proves the effectiveness in attention mechanism brought by
DEAU. DEAU performs equally with other top performers
such as Micro-Net and DIST when we compare the Dice.
We need to improve the post-processing of our approach to
further refine the other instance segmentation metrics.

We showed the qualitative results in Fig. 5 (columns 2 and
3). Since DEAU and attention U-net generate attention maps
as metadata, we compare attention mechanisms of both meth-
ods by visualizing the attention maps generated by each of
them. As shown in Fig. 5, DEAU based attention mechanism
shows accurate localization of nuclei. However, attention
U-net shows poor attention and sometimes confusing. As
an example, in the sample from Kumar (2nd row), on the
right top region, grid-based attention shows high attention
to nuclei, however, in the center, the attention was poor on
nuclei. DEAU was consistent where it has a high attention
to nuclei in the entire image.

IV. CONCLUSION

In this paper, we presented a novel attention-based deep
learning approach to segment nuclei. The method was build
upon a novel secondary encoder to constrain the DEAU
to focus on only relevant regions of H&E image such as
nuclei. The input to the secondary encoder, stain separated
H channel, help DEAU not to look for all over the image. We
conclude that the addition of a secondary encoder and logical
attention prior significantly helped the network to learn a
better representation in the latent space. This also enabled the
decoder to produce improved probability maps to segment
nuclei. Quantitative comparison with other contemporary ap-
proaches shows that the method achieves a higher dice score.
The other metrics such as AJI, DQ, SQ, and PQ depend upon
the accuracy of post-processing techniques. In the future,
we want to tune our post-processing further to improve the
performance. We analyzed through visual comparison, that
the attention maps generated by our method are finer and
more consistent than grid-based attention approach.
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