
  

 

Abstract— Longitudinal follicle tracking is needed in clinical 

practice for diagnosis and management in assisted reproduction. 

Follicles are tracked over the in-vitro fertilization (IVF) cycle, 

and this analysis is usually performed manually by a medical 

practitioner. It is a challenging manual analysis and is prone to 

error as it is largely operator dependent. In this paper we 

propose a two-stage framework to address the clinical need for 

follicular growth tracking. The first stage comprises of an 

unsupervised deep learning network SFR-Net to automate 

registration of each and every follicle across the IVF cycle. SFR-

Net is composed of the standard 3DUNet [1] and Multi-Scale 

Residual Blocks (MSRB) [2] in order to register follicles of 

varying sizes. In the second stage we use the registration result 

to track individual follicles across the IVF cycle. The 3D 

Transvaginal Ultrasound (3D TVUS) volumes were acquired 

from 26 subjects every 2-3 days, resulting in a total of 96 volume 

pairs for the registration and tracking task. On the test dataset 

we have achieved an average DICE score of 85.84% for the 

follicle registration task, and we are successfully able to track 

follicles above 4 mm. Ours is the novel attempt towards 

automated tracking of follicular growth [3]. 

 

Clinical Relevance— Accurate tracking of follicle count and 

growth is of paramount importance to increase the effectiveness 

of IVF procedure. Correct predictions can help doctors provide 

better counselling to the patients and individualize treatment for 

ovarian stimulation. Favorable outcome of this assisted 

reproductive technique depends on the estimates of the quality 

and quantity of the follicular pool. Therefore, automated 

longitudinal tracking of follicular growth is highly demanded in 

Assisted Reproduction clinical practice. [4] 

I. INTRODUCTION 

Longitudinal tracking of follicular growth is a vital component 

of in-vitro fertilization (IVF) assessment and timing [5]. It 

essentially employs a technique for assessing ovarian 

follicles at regular intervals and documenting their pathway to 

ovulation. Detecting and tracking follicles in the longitudinal 

scan is important to monitor their growth, as determining the 

dosage of hormone for stimulating the ovary depends on the 

rate of growth of each follicle [3]. Longitudinal tracking of 

follicular growth also assists in identifying those subjects who 

do not respond to the initial dose of hormone and may be 

considered for subsequent increased doses [6]. 

 

 
 

3D Transvaginal Ultrasound (3D TVUS) is the preferred mode 

of tracking follicles. Ultrasound monitoring may begin on day 

3 of the IVF cycle to assess a baseline size as well as to exclude 

any cysts that remain from previous hyper-stimulation or 

otherwise, and is then monitored every alternate day till day 

14. Fig. 1 shows the manual longitudinal tracking of follicular 

growth to determine hormonal doses for ovarian stimulation in 

one IVF cycle. 

 

Longitudinal tracking of follicular growth involves 

segmenting follicles for every longitudinal scan and then 

registering the segmentations to track the growth of each 

individual follicle. However, follicle segmentation and 

longitudinal tracking is a challenging task due to the following 

reasons – i) certain follicles suddenly disappear or regress in 

size, ii) blurring of follicular boundary, iii) follicular 

movement inside the ovary, and iv) irregular follicular growth 

i.e. close to the end of the IVF cycle there is a rapid growth of 

follicles and a follicle which was dominant on say, day 3 of the 

cycle, may not be dominant at the end of the cycle. 

 

Due to the above mentioned reasons, longitudinal tracking of 

follicular growth is an extremely difficult and time-consuming 

task even for expert medical practitioners. We propose a two-

stage framework involving an unsupervised deep learning 

registration model and a tracking algorithm to realize this 

outcome. Our work on longitudinal tracking of follicular 

growth is in addition to our lab’s continuous research output 

in quantification applications [3,4,6-9] and clinical research 

papers [10,11] in the Assisted Reproduction domain. 

 

Diplav Srivastava†, Saumya Gupta†, Srinivas Kudavelly, Venkata Suryanarayana K., Ramaraju GA, MD 

Unsupervised Deep Learning based Longitudinal Follicular Growth 

Tracking during IVF Cycle using 3D Transvaginal Ultrasound in 

Assisted Reproduction 

† denotes equal contribution 

Diplav Srivastava, Saumya Gupta, Srinivas Kudavelly, Venkata Suryanarayana K are 

with Samsung R&D Institute, Bangalore, India (Phone: +91-80-3341-3000;  

Fax: +91-80-3341-3001; E-mail: s.kudavelly@samsung.com) 

Ramaraju GA, MD is with Krishna IVF Clinic, Visakhapatnam, India  

(E-mail: krishnaivf@gmail.com) 

 

Figure 1: Representation of an IVF cycle. 3D TVUS volumes are acquired 

starting from day 0 till day 14. Hormonal doses are determined depending 

on the follicular growth. 
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II. METHODOLOGY 

In this section, we present the registration framework to 

estimate the deformation field (𝐷𝑋𝑌) for registration of 

moving 3D TVUS volume 𝑋 with fixed 3D TVUS volume 𝑌, 

followed by the tracking algorithm to track follicles 

throughout the IVF cycle. 

 

A. Registration Framework 

An overview of our approach for the registration framework 

is shown in Fig. 2. 𝑋 and 𝑌 are 3D TVUS volumes of the same 

subject with a gap of 𝑇 days, where 𝑇 < 4. We propose a two-

step process to register the 3D follicle segmentations obtained 

from the longitudinal data. The 3D follicle segmentation maps 

𝑋𝑓_𝑠𝑒𝑔 and 𝑌𝑓_𝑠𝑒𝑔, and 3D ovary segmentation maps 𝑋𝑜_𝑠𝑒𝑔 

and 𝑌𝑜_𝑠𝑒𝑔, are obtained by feeding 𝑋 and 𝑌 respectively to an 

in-house ovary and follicle segmentation network S-Net [9]. 

Using the 3D ovary segmentation maps 𝑋𝑜_𝑠𝑒𝑔 and 𝑌𝑜_𝑠𝑒𝑔, we 

first register the ovary in them and obtain the rigid 

transformation matrix 𝑅𝑋𝑌.  We apply 𝑅𝑋𝑌 on 𝑋𝑓_𝑠𝑒𝑔 to obtain 

3D ovary-registered follicle segmentation map 𝑋𝑓_𝑠𝑒𝑔
𝑂  so that 

𝑋𝑓_𝑠𝑒𝑔
𝑂  and 𝑌𝑓_𝑠𝑒𝑔 are properly aligned. Since the 3D TVUS 

volumes 𝑋 and 𝑌 are of the same subject with a gap of less 

than 4 days, there is minimal change in the ovarian volume 

and we consequently perform rigid registration to align them 

[4]. This is done by computing the distance maps for the ovary 

segmentations, which are then aligned using the BRAINSFit 

module [12]. For performing follicle registration on ovary-

registered volumes, we propose a novel unsupervised deep 

learning based deformable registration model SFR-Net 

inspired from Balakrishnan et al. [13]. SFR-Net takes 𝑋𝑓_𝑠𝑒𝑔
𝑂  

and 𝑌𝑓_𝑠𝑒𝑔 as input and produces the deformation field 𝐷𝑋𝑌 as 

output.  

 

The architecture of SFR-Net is shown in Fig. 3. SFR-Net 

comprises of the standard 3DUNet with Multi-Scale Residual 

Blocks (MSRB) at the top-most level of the 3DUNet. To cater 

to the variation of follicle size from 2 mm to 30 mm, we use 

differing kernel sizes 3, 5, and 7, for our MSRB blocks. These 

blocks detect image features at multiple scales so as to fully 

exploit the potential features of the image. Thus the different 

filter size allows to effectively register follicles of varying 

sizes across the IVF cycle – smaller follicles of size 2-10 mm 

in early days of the cycle and larger follicles of size 17-30 mm 

at the end of the cycle. The SFR-Net outputs the deformation 

field 𝐷𝑋𝑌 which is applied to 𝑋𝑓_𝑠𝑒𝑔
𝑂  using a pre-defined 

Spatial Transformation Network (STN) [14]. This results in 

the final follicle-registered 3D follicle segmentation 𝑋𝑓_𝑠𝑒𝑔
𝐹 , 

which is used in longitudinal tracking of follicular growth. 

Figure 2: Overview of follicle registration framework. Registration is performed on two 3D TVUS volumes 𝑋 and 𝑌 obtained from the same subject with a 

gap of 𝑇 days, where 𝑇 < 4. 

Figure 3: SFR-Net architecture; The number on top of each layer denotes the 

number of channels outputted by that layer. 𝑋𝑓_𝑠𝑒𝑔
𝑂  and 𝑌𝑓_𝑠𝑒𝑔 retain the same 

meaning as shown in Fig. 2 and described in the Methodology section. 

Figure 4: Pseudocode to track individual follicles between two 3D follicle 
segmentation maps differing by T days where T < 4. 
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B. Tracking Algorithm 

Our tracking algorithm tracks individual follicles in two 

follicle-registered volumes having a gap of T days in the IVF 

cycle, where T < 4. The pseudocode for the tracking algorithm 

is shown in Fig. 4. 𝐹𝑁 and 𝐹𝑁+𝑇 are the 3D follicle 

segmentation maps of 3D TVUS volumes on day N and day 

N+T respectively. 𝐹𝑟𝑒𝑔𝑁 is the 3D follicle segmentation map 

obtained after registering 𝐹𝑁 to 𝐹𝑁+𝑇 using the registration 

framework described above. 𝐹𝑗
𝑁+𝑇 (the jth follicle in 𝐹𝑁+𝑇) is 

identified as 𝐹𝑖
𝑁 (the ith follicle in 𝐹𝑁) if the value of DICE 

(𝐹𝑗
𝑁+𝑇, 𝐹𝑟𝑒𝑔𝑖

𝑁) is maximum across all follicles in 𝐹𝑁.  
 

III. EXPERIMENTAL SETUP 

A. Dataset 

We have obtained 3D TVUS volumes for 26 subjects from 

Krishna IVF Clinic (KIVF) [15]. The volumes have been 

acquired by a trained sonographer using Samsung Medison 

WS80A Ultrasound equipment, with an endovaginal probe 

V5-9 [16].  All the datasets have been captured from subjects 

who were undergoing Assisted Reproduction treatment. The 

datasets are of resolution 100×100×100. For each subject, 3D 

TVUS volumes have been acquired every 2 or 3 days during 

the IVF cycle resulting in 96 data pairs.  

B. Loss function and network parameters 

We randomly select 80 3D TVUS volume pairs from 22 

subjects for training. The SFR-Net is trained in an 

unsupervised manner using a combination of DICE loss 𝐿𝐷𝐼𝐶𝐸 

and regularization loss 𝐿𝑆𝑀𝑂𝑂𝑇𝐻 . We encourage a smooth 

deformation field using a L2 regularizer on the spatial 

gradients of the SFR-Net output. Specifically, when  𝑋𝑓_𝑠𝑒𝑔
𝑂  

and 𝑌𝑓_𝑠𝑒𝑔 are given as training input, the total loss function 𝐿 

is computed as follows: 
𝑳 = 𝑳𝑫𝑰𝑪𝑬 + λ * 𝑳𝑺𝑴𝑶𝑶𝑻𝑯 

𝑳𝑫𝑰𝑪𝑬  =  𝟏 −  𝑫𝑰𝑪𝑬( 𝑌𝑓𝑠𝑒𝑔
, 𝑺𝑻𝑵( 𝑋𝑓_𝑠𝑒𝑔

𝑂 , 𝐷𝑋𝑌 ) ) 

𝑳𝑺𝑴𝑶𝑶𝑻𝑯  =  𝑭𝒓𝒐𝒃𝒆𝒏𝒊𝒖𝒔𝑵𝒐𝒓𝒎( 𝛻 𝐷𝑋𝑌 ) 
 

where the terms used are defined as follows: 

 DICE(A, B) = 
 2×|𝐴 ∩ 𝐵|

|𝐴|+|𝐵|
 

 λ is the regularization parameter  

 𝑆𝑇𝑁(.) denotes the output of STN network 

 𝐷𝑋𝑌 denotes the deformation field output of SFR-Net 

 𝐹𝑟𝑜𝑏𝑒𝑛𝑖𝑢𝑠𝑁𝑜𝑟𝑚 (A) = √∑ |𝑎|2
𝑎𝜖𝐴

2
 

 ∇  is the difference between neighboring voxels in all three 

directions 

Details regarding hyper-parameters used are in Table I. 

IV. RESULTS 

A.   Datasets and Hardware Configuration 

For evaluation, we used 16 3D TVUS volume pairs from 4 

subjects that were not used for training. We performed 

evaluation using one NVIDIA TESLA P100 (16GB) GPU. 

B.  Quantitative Evaluation 

For quantitative evaluation, we compute the DICE score 

which is the standard metric used for evaluating registration. 

Our solution has an average DICE score of 85.84%. 

 TABLE I. TRAINING CONFIGURATION 

 

C.  Qualitative Evaluation 

The visual evaluation of longitudinal follicle tracking on a 

single subject for days 3, 5, 7, 9, and 11 is shown in Fig. 5, 

with quantitative information reported in Table 2. This 

demonstration is for one representative subject, and is 

generalizable for other subjects as well. From Fig. 5 a) – d) 

we see that there is almost no alignment between 𝑋𝑓_𝑠𝑒𝑔 and 

𝑌𝑓_𝑠𝑒𝑔. Ovary registration helps in better aligning the volumes 

as can be seen in Fig. 5 e) – h). We see in Fig. 5 i) – l) that our 

proposed follicle registration framework largely registers the 

volumes correctly. From Table 2, we see that there are more 

number of follicles in day 7 as compared to in day 9 because 

certain follicles suddenly disappear or regress in size, thus 

resulting in a reduced DICE score in Fig. 5 c) k). Faced with 

such challenging limitations, our proposed solution is still able 

to decently register given 3D follicle segmentation pairs and 

hence able to track the growth of follicles. In Fig. 5 m) – q) we 

demonstrate successful tracking of longitudinal follicular 

growth for four representative follicles above 4 mm labeled 

in colors magenta, turquoise, dark blue, and orange, across 

days 3, 5, 7, 9, and 11. Table 2 captures the diameter of each 

of these four representative follicles across the IVF cycle. The 

results for our follicle tracking algorithm was verified and 

validated by expert medical practitioners in KIVF. Hence we 

assert the viability of our proposed registration and tracking 

framework.  
  

TABLE II.  FOLLICLE DIAMETER OF REPRESENTATIVE 

FOLLICLES IN FIG. 5 FOR A SINGLE SUBJECT (IN MM) 

 

V. DISCUSSIONS AND CONCLUSION 

In this paper we propose a two-stage framework for 

longitudinal tracking of follicular growth. This framework 

involves an unsupervised deep learning registration model and 

a tracking algorithm. Ours is the novel attempt on this 

problem, achieving an average DICE score of 85.84% for 

follicle registration. The performance can be attributed to the 

use of MSRB blocks which generate features at multiple 

scales, and thus enable the network to register follicles of 

Hyper parameters Values 

Input Size 100×100×100 

Learning rate 1×10-4 

No. of epochs 200 

Optimizer 
Adam optimizer, with 
β1 = 0.9, β2 = 0.999 

Batch size 12 

Decay Schedule 
The decay rate was 0.1 with 
value of decay step set to 750 

Regularization parameter λ 1×10-3 

Deep learning library Pytorch 1.5.1 [17] 

CUDA version 10.1 [18] 

Follicle Label Day 3 Day 5 Day 7 Day 9 Day 11 

   Dark blue   10.30 13.98 15.01 17.94 20.58 

   Orange       8.32 10.24 11.26 14.82 18.86 

   Turquoise   7.68 8.36 9.84 12.04 14.72 

   Magenta     4.66 5.08 6.42 9.14 10.12 

Follicle Count 21 19 17 13 16 
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varying sizes across the IVF cycle. We are thus able to track 

follicles of size greater than 4 mm across the IVF cycle. 

Confirmation with the medical practitioners at KIVF gives 

confidence to the efficiency and viability of our proposed 

approach for longitudinal follicular growth tracking of 

follicles above 4 mm. 

Our problem of longitudinal tracking of follicular growth is 

challenging because of the following limitations: i) certain 

follicles suddenly disappear or regress in size, ii) blurring of 

follicular boundary, iii) follicular movement inside the ovary, 

and, iv) irregular follicular growth. Due to this, the number of 

follicles in a given pair of volumes usually vary, and so the 

DICE score should not be used as the absolute metric to 

quantify SFR-Net. Furthermore, the performance of our 

framework depends on the accuracy of the segmentation 

masks being fed as input. The dataset size was also a limitation 

as we only had 80 volume pairs for training. 

Our future efforts will be on acquiring more datasets for 

training so as to improve generalizability of the proposed 

framework. We will also consider the inclusion of anatomical 

landmark such as the ovarian artery for registration. This 

guiding landmark would be an effective reference to register 

against as its orientation is constant. Furthermore, we will 

provide Target Registration Error (TRE) after clinically 

acquiring the relevant markers to compute it. 
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