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Abstract— Experimental background noise present in 
biosensors’ data hinders the ability for sensitive and accurate 
detection of critical biomarkers. Here, we report our digital 
signal processing analysis with respect to frequency and time 
domain (FTD) data to reduce noise in an experimental 
microfluidic impedance cytometer. We evaluated the 
effectiveness of employed noise filtering techniques 
independently, including baseline drift correction, high 
frequency noise filtering, and powerline interference 
mitigation. We further explored the combined effect of all 
filters and determine improvements in signal-to-noise (SNR) 
ratio and particle counting accuracy. By removing noise 
regimes, SNR improved with this impedance cytometer device, 
and our future efforts will explore filtering effects of more 
specific and uncommon noise spectrums to greater optimize 
device performance. 

I. INTRODUCTION 

The field of biosensors has grown significantly in the past 
20 years, and now provides a myriad of detection options 
including optical/fluorescence imaging [1], electrically-based 
[2]–[4], acoustics [5], and many more. Throughout all of 
them though is the need for identifying desired signal and 
isolating it from background noise. This noise can arise from 
environmental factors, intrinsic artifacts from the equipment 
used, or competing off-target analytes persistent in the 
sample [6], [7]. Reducing noise and improving the signal 
sensitivity measured by the signal-to-noise ratio (SNR) is 
vital for robust and accurate biosensor performance. 

Some techniques include improving equipment 
acquisition or modifying sample preparations [8]. For many 
optimized cases, however, the most robust option is digital 
data processing and noise filtering post data collection [9]. 
This is performed by interpreting the collected values in the 
frequency or Fourier domain. Here, data is transformed into a 
series of waveforms that are categorized by frequency and 
the prevalence of those frequencies are represented in a 
distribution. While a useful technique for known noise and 
signal regimes, the interlacing which can occur between them 
reduces the frequency domain role as only observational. 

Here, we present a stepwise digital signal processing 
approach for improving SNR in an impedance-based 
microfluidic biosensor through assessments of frequency and 
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time domain (FTD) data. We have designed and fabricated a 
microfluidic device using gold electrodes to count 9 µm 
polystyrene particles, representing immune cells based on 
relative size which are useful for diagnosing cancer [10], HIV 
[11], diabetes [12], and more. After retrieving bipolar pulses, 
we introduce a series of digital filters by isolating specific 
noise regimes which arise from signal baseline drift, high 
frequency dependencies, and powerline interference (PLI) 
[13], [14]. While some of these approaches have been used, 
to the best of our knowledge this is the first time these noise 
reduction approaches have been evaluated and applied 
together in a real-sample impedance cytometry apparatus. 

II. MATERIALS AND METHODS 

A. Materials 

9 µm polystyrene (PS) particles (2.5% w/v) were 
purchased from Spherotech (Lake Forest, USA), Sylgard 184 
was purchased from Dow (Midland, USA), phosphate 
buffered saline (PBS, 1X) was purchased from Thermo 
Fisher Scientific (Waltham, USA), 4” borosilicate and silicon 
wafers were purchased from University Wafer (South 
Boston, USA), photoresist was purchased from Kayakuam 
(Tokyo, JPN), epoxy adhesive was purchased from Digi-Key 
Electronics (Thief River Falls, USA), and (3-Amino-
propyl)triethoxysilane (APTES) was purchased from Sigma 
Aldrich (St. Louis, USA). Printed circuit boards (PCBs) were 
purchased from Sunstone Circuits (Mulino, USA), HF2TA 
Current and Lock-in Amplifiers were purchased from Zurich 
Instruments (Zurich, SUI). A PCIe-6361 (16 bit, 2 MS/s) data 
acquisition card and LabView software were purchased 
through National Instruments (Austin, USA). MATLAB was 
purchased through MathWorks (Natick, USA). 

B. Gold Electrode and Microfluidic Channel Fabrication 

Microposit s1813 photoresist was spin-coated above a 4” 
borosilicate wafer (1.55 µm layer). SU-8 3025 photoresist 
was spin-coated above a 4” silicon wafer (22 µm layer). For 
both, photolithography is performed per the manufacturer’s 
protocol. The borosilicate wafer is sputtered with 250 nm of 
chromium and 750 nm of gold. After liftoff, individual 
devices are cut out with a diamond saw (Fig. 1a). The silicon 
wafer surface is treated with ATPES. PDMS is formed by 
combining 10 parts Sylgard 184 elastomer base with 1 part 
curing agent and cured over the silicon wafer. After curing, 
PDMS is removed, and inlet and outlet holes are punched.  

C. Microfluidic Device Connection and Interfacing 

The PDMS channel and gold electrodes are treated with 
oxygen plasma using a plasma chamber (100W power for 1 
min at 60 cm3/min of O2). Immediately after, the PDMS is 
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Figure 1.  a) Image of gold microelectrodes bonded with PDMS 

microfluidic device. b) Microscope image of electrode sensing region, with 
electrode alignment between channel focusing regio\ns. c) Time domain 

impedance results for 9 µm polystyrene particles flowing through device. d) 
Enhanced bipolar pulse to obersve peak amplitude compared to noise. 

aligned and bonded above the microelectrodes with focusing 
regions positioned between outer electrodes (Fig. 1b). 
Syringe tubing was inserted into PDMS inlet and outlet 
holes to facilitate media flow using a syringe pump.  

Silver conductive epoxy connects the microfluidic 
devices with a custom PCB. The PCB then connects with a 
custom Veroboard which facilitates transimpedance 
amplification for signal detection using HF2TA current 
amplifiers from outer electrodes and inputs a 5V AC signal 
to the middle electrode using a lock-in amplifier (Fig. 1a). 9 
µm PS particles are diluted in 1X PBS at a concentration of 
2x105 particles/mL and flow through the device at a 15 
µL/min flow rate. 

D. Signal Acquisition 

Current is received from electric field changes in the 
microfluidic channel at a 250 kHz sampling rate. This is 
converted to voltage with a transimpedance amplifier and 
multiplies the signal with a gain of 1,000. The voltage 
signals are then combined in a differential amplifier, which 
changes the results from two separate signals to the 
difference between them and forms the bipolar signal pulse 
for the objects passing over the device (Fig. 1c and 1d). This 
removes common-mode noise that may persist in the circuit.  

E. Digital Signal Processing and Sampling Algorithm 

Time-domain signals are saved through a LabView 
control program. A MATLAB algorithm sets a threshold of 
values greater than 5x the background noise to indicate PS 
particle detection. Here, background noise (σBG) is the root 
means squared (rms) of 5,000 data points without particle 
pulses (datanoise) after manually visualizing the data (Eq. 1): 

 σBG = rms(datanoise) 

Bipolar amplitude for one particle (∆VT) is measured as the 
maximum value (∆Vmax) minus the minimum (∆Vmin) for 
500 data points ± the threshold position, shown by Eq. 2: 

 ∆VT = ∆Vmax − ∆Vmin 

To ignore two or more PS particles flowing through the 
electric field at once, bipolar amplitudes are binned into 6 
discrete categories, and the most common category is 
selected as one particle flowing through the channel (∆ET,1 

particle). The SNR is calculated using this signal mode (Eq. 3): 

 SNR = 20log10(rms(∆VT,1 particle)σBG) 

Subsequent digital filters are applied using MATLAB. A 
4th order Butterworth filter is used for high and low pass 
filters, while a 1st order Butterworth filter is used for the 
band-stop filters using the Signal Processing Toolbox. 
Signals are converted from time-domain to frequency-
domain values using the fast Fourier transform (FFT) 
function in MATLAB. 

III. RESULTS AND DISCUSSION 

A. Original Unprocessed Data 

After magnifying signal acquired using transimpedance 
current amplifiers, Fig. 1c represents the raw data without 
post processing or frequency analysis, with a bipolar pulse 
recorded over time (Fig. 1d). From this, there are several 
noticeable signal restrictions including voltage drift and a 
large persistent noise band. There are also incidences of 
larger particle amplitudes, which may be attributed to two or 
more particles being detected at once. This theory is support 
by the fact that most particle peaks are divisible by the 
bipolar signal amplitude that occurs most often (2.627±0.313 
V). This is quantified in Table 1, along with metrics from 
each filtering effect which will be discussed later. After 
visualizing signal spectra in the frequency domain (Fig. 2a) 

 

 
Figure 2.  a) Fourier transform (FFT) showing frequency domain results of 

unfiltered raw data. b) Expanded low frequency region to highlight high 
amplitude baseline drift. c) Expanded low amplitude region to better 
visualize frequency distribution. d) Expanded plot to show powerline 

interference frequency visualizaition at 60 and 120 Hz. 
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using Fourier transform (FFT) analysis, many large 
amplitudes occur at low frequencies shown in Region b (Fig. 
2b) with a few exceptions. When focusing to view amplitude 
distribution across all frequencies (Fig. 2c), there is a general 
baseline amplitude up to 120 kHz produced by a combination 
of data related to both particle impedance detection and 
background noise. As further filtering effects are explored, it 
will be revealed which frequency regimes are attributed to 
particle peaks and which can be removed to reduce 
background noise and improve signal quality.  

B. Filtering Powerline Interference (PLI) Frequencies 

The sharp amplitudes that arise from the 60 and 120 Hz 
frequencies are used in power supplies for electrical 
equipment in the U.S, which uses a standard 120V AC 
voltage input at a 60 Hz frequency that persists through to 
measurements in the device. Additionally, the voltage source 
has significant amplitude at the second harmonic of its 
frequency at 120 Hz. While other peaks are seen at further 
harmonics (180 Hz, 240 Hz, etc.) their relative amplitudes are 
negligible as harmonic persistence diminishes relative to the 
original frequency. As such, values related to 60 and 120 Hz 
are predominantly the result of this electric source known as 
powerline interference (PLI) which is entirely noise. 

To overcome PLI, band-stop filters were implemented 
which selected and attenuated data from frequencies between 
59.5-60.5 Hz and 119.5-120.5 Hz. Fig. 3 shows the FTD 
result of these efforts. While little difference can be observed 
by visualizing the time-domain data (Fig. 3a) versus no data 
processing, in the frequency domain the PLI frequencies 
were negated by the band-stop filter (Fig. 3b). As particle 
pulse frequencies may be above 50 Hz, this tight range for 
PLI removal was to prevent particle signal degradation, and 
the first-order filter was still satisfactory in powerline 
attenuation. After recording particle pulses and measuring 
noise (Table 1), there is slightly improved signal quality 
(23.741±0.189 dB SNR with PLI removed vs. 23.732±0.380 
dB SNR for raw data). Nonetheless, the effects of PLI are 
constant in the U.S. regardless of device voltage input, user-
defined frequency input, sampling rate, or media flow rate, 
and as such should be included to mitigate potential signal 
loss over different parameters. 

C. Filtering High Frequency Data 

As PS particles pass through the electric field, their 
recorded peak has a consistent width that is based on the 
transit time across this distance. With a flow rate of 15 
µL/min for these experiments, these bipolar pulses and 

 
Figure 3.  a) Time domain for 9 µm polystyrene particles after only 
removing powerline interference using band-stop filters. b) Fourier 

transform (FFT) showing frequency domain results of data, with insert 
revealing the removed peaks at 60 Hz and the 120 Hz second harmonic.  

 

Figure 4.  a) Time domain for 9 µm polystyrene particles after only 
removing frequencies above 100 kHz using a low pass filter. b) Fourier 

transform (FFT) showing frequency domain results of data, with frequency 
amplitude falling off after 100 kHz as highlighted in the expanded insert. 

attributed data are found within a frequency regime between 
50 Hz and 90 kHz [9], and thus higher frequency domains 
hold primarily noise data. By applying a low pass filter alone 
to reduce amplitudes above 100 kHz, overall background 
noise was reduced. Fig. 4a visualizes this, as the noise band 
throughout the time domain data is thinner, and the insert 
graph in Fig. 4b confirms a steady amplitude drop-off for 
frequencies greater than 100 kHz due to the low-pass filter. 
This is further quantified in Table 1, where noise is lower, 
and SNR increased more than filtering PLI alone (Table 1). 
Frequencies above 100 kHz may represent the most 
widespread noise-only regime in the Fourier domain, but 
further filtering can isolate and remove the largest amplitude 
noise present at low frequencies.  

D. Filtering Low Frequency Data 

The largest amplitude in the Fourier domain is attributed 
to background noise. Indeed, frequencies below 20 Hz 
represents the baseline drift which is the result of external 
ionization from external electrical equipment and minor flow 
variances [6]. Quantization may manifest in baseline drift as 
well but is negligible in relation to external factors as a high 
bitrate is used in the data acquisition card. This drift is a 
significant limitation as it alters the range particle pulses are 
detected with the same amplitude from its cutoff point, 
resulting in inaccurate particle counting with false negatives. 
While many complicated techniques have been employed to 
remove baseline drift [15], if the desired signal is not in the 
baseline drift regime then the simplest method of a well-
selected high pass filter is most appropriate [13]. 

 
Figure 5.   a) Time domain for 9 µm polystyrene particles after only 
removing frequencies below 20 Hz using a high pass filter. b) Fourier 

transform (FFT) showing frequency domain results of data, with signals 
below 20 Hz significantly negated. 
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TABLE I.  SIGNAL RETRIVAL FROM FILTERING EFFECTS 

Filter Applied 
Noise 

(σBG, V) 
Signal Mode 

(V) 
Signal-to-Noise 
Ratio (SNR, dB) 

No Filter 0.1709 2.627±0.117 23.732±0.380 

PLIa 0.1707 2.626±0.058 23.741±0.189 

Low Pass (100 kHz) 0.1596 2.638±0.052 24.364±0.171 

High Pass (20 Hz) 0.1708 2.946±0.056 24.736±0.164 

All Filters 0.1531 2.854±0.053 25.409±0.159 

a. PLI = Powerline Interference (Band-stop filters at 60 and 120 Hz) 

Fig. 5 represents FTD results after applying a high pass 
filter alone. The most apparent change is the time domain 
data is normalized to 0V and drift is removed (Fig. 5a), 
while low frequency data is removed in the FFT domain 
(Fig. 5b). While persistent noise amplitude does not appear 
to change in magnitude, this filter improves PS pulse 
detection by increasing their average amplitude. 
Concurrently, SNR increases, and PS pulses are more 
identifiable (Table 1).  

E. Effects of Combined Filtering  

Finally, the use of a low pass filter, high pass filter, and 
band-stop filters to eliminate PLI were used in series to 
evaluate synergistic properties in ameliorating SNR. Fig. 6 
details these results, which affirms the added effects of 
removing baseline drift with reducing the persistent noise 
band (Fig. 6a). In the frequency domain (Fig. 6b), the bulk 
amplitudes are observable without focusing in on any 
regimes, indicating the largest frequency amplitudes found 
in the unfiltered signal were the result of all or mostly noise. 
This also revealed the largest increase in SNR (Table 1), as 
bipolar amplitude increased from better acquisition after 
baseline drift was removed and noise was lower comparable 
to the low pass filter removing high frequency noise. 

IV. CONCLUSION 

The presented study has detailed iterative effects from 
digital filtering to reduce biosensor noise and presents the 
practical application of FTD analysis for experimental 
impedance data. While SNR improved through these efforts, 
the final SNR magnitude with all filters applied is relatively 
small, a consequence of the device’s design and the 
prevalence of common noise. Additionally, the purposed 
filtering strategies may have less impact for systems which 
measure biomarkers in different frequency spectra. 

 
Figure 6.  a) Time domain for 9 µm polystyrene particles after applying all 

filters (20 Hz high pass, 100 kHz low pass, 60 and 120 Hz band-stop 
filters). b) Fourier transform (FFT) showing all frequency amplitudes after 

filtering were reduced for common frequencies related to background noise. 

However, the 9 µm PS particles are the same physical scale 
to human immune cells, and the device’s sensitivity in 
measuring these particles lends to the possible application of 
this device in point-of-care cell counting, and biological 
samples are currently being investigated. Future efforts used 
alongside FTD can facilitate greater biosensor performance 
such as machine learning, adaptive filtering, and signal 
averaging to further define and eliminate noise regimes. As 
the frequency domain is continuously becoming more 
understood in relation to signal vs. noise data, future studies 
may develop an improved biomarker quantification scheme 
measured entirely from the frequency space. 
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