
  

  

Abstract— A valid evaluation of neurological functions after 

stroke may improve clinical decision-making. The aim of this 

study was to compare the performance of EEG-related indexes 

in differentiating stroke patients from control participants, and 

to investigate pathological EEG changes after chronic stroke. 20 

stroke and 13 healthy participants were recruited, and 

spontaneous EEG signals were recorded during the resting state. 

EEG rhythms and complexity were calculated based on Fast 

Fourier Transform and the fuzzy approximate entropy (fApEn) 

algorithm. The results showed a significant difference of alpha 

rhythm (p = 0.019) and fApEn (p = 0.003) of EEG signals from 

brain area among ipsilesional, contralesion hemisphere of stroke 

patients and corresponding brain hemisphere of healthy 

participants. EEG fApEn had the best classification accuracy 

(84.85%), sensitivity (85.00%), and specificity (84.62%) among 

these EEG-related indexes. Our study provides a potential 

method to evaluate alterations in the properties of the injured 

brain, which help us to understand neurological change in 

chronic strokes. 

I. INTRODUCTION 

Stroke is a leading cause of death and acquired disability 
in adults. Globally, 15 million people suffer from stroke every 
year and 5 million are left with permanently disability [1]. 
Stroke survivors have significantly lower performance for 
mental, physical, and self-rated health [2]. Intensive therapeutic 
interventions can help them regain their lost motor functions 
and facilitate their return to society, especially during chronic 
stage in which spontaneous recovery getting slow. Before 
therapeutic interventions are selected for patients after stroke, 
a comprehensive understanding of the neurological 
deficiencies in post-stroke patients will be useful for designing 
appropriate recovery strategies and can optimize the 
effectiveness of rehabilitation training. Among different 
neuroimaging technologies, surface Electroencephalography 
(EEG) is a non-invasive technology with excellent temporal 
resolution, low cost and no real safety restrictions. It directly 
measures abnormal voltage fluctuations within the impaired 
brain. It is widely used to diagnose cerebral dysfunctions and 
brain degenerative diseases. E.g. Finnigan et al. identified the 
slow EEG activity (delta/alpha ratio) which can most 
accurately discriminate between ischemic stroke patients and 
controls [3]. Borich et al. evaluated interhemispheric cortical 
connectivity between the primary motor cortices in chronic 
stroke patients and controls using simultaneous EEG, and 
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found significantly increased TMS-evoked beta (15–30 Hz) 
imaginary phase in the stroke group [4]. 

Many linear signal processing methods as mentioned 
above have been applied in brain signal analysis and made 
achievements in disease diagnosing and monitoring. However, 
the human brain is a complex nonlinear system. Nonlinear 
dynamic approaches provide novel insights into brain diseases 
and could be a useful tool to understand the mechanisms of 
neuronal degeneration after injury. E.g., point correlation 
dimension was used for the analysis of EEG recorded in 
patients with unilateral stroke caused by middle cerebral artery 
occlusion [5]. Fuzzy approximate entropy (fApEn) was applied 
to monitor the motor function improvement during robot-aided 
rehabilitation training [6]. However, few studies have been 
done on evaluating and comparing the performance of these 
EEG indexes as bio-makers for reflecting neurological change 
in chronic stroke. In this study, linear and non-linear EEG-
related indexes (EEG oscillation, EEG complexity) were 
compared between chronic stroke and healthy controls to 
investigate pathological changes in EEG after stroke.  

II. MATERIALS AND METHODS 

A. Participants 

Twenty stroke patients (three females and 17 males; aged 

54.2 years  9.17) with a single unilateral brain lesion with 
onset at least 6 months before data collection and 13 healthy 

subjects (four females and nine males; aged 33.1  6.60 years) 
were recruited for this study. The inclusion criteria of stroke 
subjects include (1) Sufficient cognition to follow simple 
instruction and understand the purpose of the experiment 
(MMSE>21); (2) Hemiparesis resulting from unilateral brain 
lesion with time since stroke more than six months before 
study enrolment. (3) The moderate motor function of upper 
limb (FMA- UL>10 and FMA-UL<50). The exclusion criteria 
include (1) visual field deficits. All the subjects gave their 
written informed consent according to the Declaration of 
Helsinki. Joint Chinese University of Hong Kong-New 
Territories East Cluster Clinical Research Ethics Committee 
(CUHK-NTEC CREC) approved the experimental protocol 
(agreement #2014.705-T). This study was also registered at 
www.clinicaltrials.gov with study identifier NCT02323061. 
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B. EEG acquisition and processing 

EEG signals were referenced to a unilateral earlobe, 
grounded at frontal position (Fpz), and sampled at 256 Hz 
using a g.USBamp (g.Tec Medical Engineering GmbH, 
Austria) system with 16 active electrodes (g.LADYbird). The 
10–20 system of electrode placement was used with electrodes 
placed at C3, C4, FC3, FC4, CP3, CP4, FC1, FC2, C1, C2, 
CP1, CP2, C5, C6, FCz, and Cz. The impedance for all 
electrodes were kept below 5 kΩ which was measured by 
passing a small current between electrodes and measuring the 
opposition to the flow of this current. The EEG was recorded 
in the resting condition with eyes open naturally in a dark 
sheltering room for 3 minutes, participant can blink if needed. 
Participant fixed his eyes at a certain position to prevent ocular 
contamination in EEG due to large eyeball movement. EEG 
signals were also online band-pass filtered from 2 to 60 Hz and 
notch filtered between 48-52 Hz to remove artefacts and power 
line interference. 30 seconds data without apparent artefacts 
(such as blinks, EMG, and visible drift) were selected 
manually from each patient’s EEG recording and exported into 
MATLAB (The MathWorks, Natick, MA, USA) for further 
analysis. For offline analysis, EEG was compared from FC3, 
FC4, C3, C4, CP3, and CP4 between stroke patients and 
healthy subjects. FC-i, C-i, and CP-i were defined as FC3/FC4, 
C3/C4, and CP3/CP4 at the ipsilesional hemisphere while FC-
c, C-c, and CP-c were defined as FC3/FC4, C3/C4, and 
CP3/CP4 at the contralateral hemisphere in stroke patients. 
FC-d, C-d, and CP-d were defined as FC3/FC4, C3/C4, and 
CP3/CP4 at the dominant hemisphere in stroke patients. EEG 
rhythms and complexity were extracted for comparison of 
healthy subjects and stroke patients at ipsilesional and 
contralateral hemispheres.  

EEG rhythms 

EEG rhythms have been widely used to discriminate the 
resting brain states of Alzheimer’s, epilepsy, and mild 
cognitive impairment patients from those of healthy 
individuals [7]. In this study, four EEG rhythms (delta, theta, 
alpha, and beta) were compared among healthy subjects at the 
dominant hemisphere, and stroke patients at the ipsilesional 
and contralateral hemispheres. Fast Fourier Transformation 
(sliding windows of 2 s with 50% overlap) was used to 
calculate EEG frequency spectrum for the following EEG 
bands: delta (1 - 4 Hz), theta (4 - 8 Hz), alpha (8 - 13 Hz), and 
beta (13 - 30 Hz). Some of the sites that were related to motor 
function were used for offline analyses (left hemisphere: FC3, 
C3, and CP3; right hemisphere: FC4, C4, and CP4). The 
FC3/FC4 lay over the pre-motor cortex and the C3/C4 lay over 
the primary motor cortex. CP3/CP4 corresponded to the 
supramarginal gyrus that is part of the somatosensory 
association cortex. 

EEG complexity 

EEG complexity has been used to assess Alzheimer’s 
disease and schizophrenia. It may reflect the condition of 
neuronal death, loss of synaptic connections, and the general 
effects of neurotransmitter deficiency [8, 9]. In this study, EEG 
complexity was calculated by a robust entropy-based 
algorithm, fApEn. Compared with other complexity 
algorithms for bio-signals (approximate entropy and sample-
entropy), fApEn exhibits robust consistency due to its vector 
similarity decision rules. This study adopted the fApEn 

algorithm described in a previous study [6, 10-12]. To compute 
the fApEn of an N sample series {𝑢(𝑖): 1 ≤ 𝑖 ≤ 𝑁}, a vector 
of length 𝑚 could be derived from the time series: 

𝑋𝑖
𝑚 = {𝑢(𝑖), ⋯ , 𝑢(𝑖 + 𝑚 − 1)} −

1

𝑚
∑ 𝑢(𝑖 + 𝑗)𝑚−1

𝑗=0           (1)                                 

Where 
1

𝑚
∑ 𝑢(𝑖 + 𝑗)𝑚−1

𝑗=0  was the baseline of the vector. The 

distance 𝑑𝑖𝑗
𝑚 between 𝑋𝑖

𝑚 and 𝑋𝑗
𝑚 was defined as: 

𝑑𝑖𝑗
𝑚 = max

𝑘∈(0,𝑚−1)
|𝑤(𝑖 + 𝑘) − 𝑤0(𝑖) − 𝑢(𝑗 + 𝑘) + 𝑢0(𝑗)|    (2)                    

A fuzzy function 𝐷𝑖𝑗
𝑚(𝑛, 𝑟) was formulated to calculate the 

similarity degree of the two vectors 𝑋𝑖
𝑚 and 𝑋𝑗

𝑚. where 𝑛 and 

𝑟 were two parameters that determined the width and gradient 
of the boundary of the exponential function, respectively: 

𝐷𝑖𝑗
𝑚(𝑛, 𝑟) = exp (−(𝑑𝑖𝑗

𝑚/𝑟)𝑛)                                             (3)                                           

The function 

m
 then aggregated the similarity from any 

vector in the time series to another as follows: 

𝜙𝑚(𝑛, 𝑟) =
1

𝑁−𝑚
∑ (

1

𝑁−𝑚−1
∑ 𝐷𝑖𝑗

𝑚𝑁−𝑚
𝑗=1,𝑗≠𝑖 )𝑁−𝑚

𝑖=1                      (4)                                      

Finally, 𝑓𝐴𝑝𝐸𝑛(𝑚, 𝑛, 𝑟, 𝑁)  was estimated using the 
algorithm of the difference between the function of the length 
𝑚 + 1 and 𝑚. 

𝑓𝐴𝑝𝐸𝑛(𝑚, 𝑛, 𝑟, 𝑁) = 𝑙𝑛𝜙𝑚(𝑛, 𝑟) − 𝑙𝑛𝜙𝑚+1(𝑛, 𝑟)          (5)                       

C. Statistical analysis 

Statistical analysis was performed using the IBM SPSS 22 
software (SPSS Inc., Chicago, Illinois, USA). For EEG 
rhythms (delta, theta, alpha, and beta oscillations) and EEG 
complexity (fApEn), repeated-measures analysis of variance 
(ANOVA), with group (stroke ipsilesional-hemisphere vs. 
healthy dominant-hemisphere and stroke contralateral 
hemisphere vs. healthy dominant-hemisphere) as between-
subject factor and electrode (FC-i, C-i, CP-i; FC-c, C-c, CP-c; 
FC-d, C-d, CP-d) as within-subject factor was performed to 
test for group differences. The Greenhouse-Geisser adjustment 
was applied to the degrees of freedom for all analyses if the 
Mauchly’s test of sphericity was significant. One-way 
ANOVA was also used to analyze the difference in each 
electrode/electrode pair if between-subject factor showed a 
significant effect in repeated-measures ANOVA. The 
significance level for all statistical analyses was set at p < 0.05. 

III. RESULTS 

A.  EEG rhythms in healthy and stroke subjects 

Fig. 1A depicts the comparison of alpha rhythm between 
stroke patents at the ipsilesional and contralateral hemispheres, 
and healthy subjects at the dominant hemisphere. For the 
electrodes at the ipsilesional hemisphere (FC-i, C-i, and CP-i), 
there was a significant difference between electrodes, 
(F(1.208, 37.446) = 6.113, p = 0.014). Furthermore, there was 
a significant difference between the groups (F(1, 31) = 6.086, 
p = 0.019). For the electrodes at the contralateral hemisphere 
(FC-c, C-c, and CP-c), there was no significant difference 
either between electrodes or between groups (p > 0.05). The 
results of one-way ANOVA revealed a significant difference 
between groups on electrodes FC-i (p = 0.020), C-i (p = 0.027), 
and CP-i (p = 0.022). Fig. 1B shows the scatter diagram of 
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stroke patients at the ipsilesional hemisphere and healthy 
subjects at the dominant hemisphere for alpha rhythm of the 
three electrodes. Linear Discriminate Analysis (LDA) was 
used to reduce the dimension of Fig. 1B from three-
dimensional space to two-dimensional space as in Fig. 1C. A 
linear classifier was generated based on the datasets of two 
groups and LDA. Fig. 1D shows the distribution of reduced 
dimension datasets of the two groups, the green curve and 
yellow curve depict the normal distribution fitting of dataset 
for healthy subjects at the dominant hemisphere and stroke 
patients at the ipsilesional hemisphere, respectively. The 
classification accuracy of alpha rhythm in differentiating 
stroke patients from heathy participants was 69.70%. No 
significant difference between stroke patients and healthy 
subjects were observed in the EEG oscillations of delta, theta 
and beta (all ps > 0.05). 

 

Figure 1. The performance of EEG alpha oscillation in differentiating stroke 
patients from healthy participants. (A) Comparison of alpha oscillation 
between stroke patients at ipsilesional and contralateral hemisphere, and 
healthy subjects at dominant hemisphere. (B) Scatter diagram of alpha 
oscillation in stroke-ipsilesional hemisphere and healthy-dominant 
hemisphere. (C) Linear Discriminant Analysis was used to reduce the 
dimension of Fig. 1B from three-dimensional space to two-dimensional space. 
(D) The distribution of dimensional reduced alpha oscillation of the healthy 
and stroke group; blue and yellow curve depicts normal distribution fitting of 
healthy and stroke groups. 

 

B. EEG complexity in the two groups 

 

 

Figure 2. Change of EEG fApEn with increase of window N, and tolerance r 
in the ipsilesional (red line) and contralesional (blue line) brain hemisphere of 
a stroke patient and dominant hemisphere (black line) of a healthy subject. 

Fig. 2A depicts the fApEn of the EEG with the window N 
increasing from 50 points to 2000 points in steps of 40 points. 

The EEG signal was collected on C-i and C-c from a stroke 
patient and C-d from a healthy subject. Fig. 2B depicts the 
fApEn of the same EEG with the tolerance window increased 
from 0.01 to 1.0 in steps of 0.01. There were only a few 
crossovers between the three curves when N was less than 600. 
No crossover was evident in the changes in the fApEn curve 
with r that reflected the excellent relative consistency of fApEn 
in short physiological signals. Combining the results of a 
previous study with those of the present study, N was set at 
1000, and r was fixed at 0.2 3. 

Fig. 3A depicts the performance of fApEn in identifying 
EEG signals from stroke patients in the ipsilesional and 
contralateral hemispheres, and healthy subjects in the 
dominant hemisphere. There was no significant interaction 
between the group and electrode (F (3.277, 100.036) = 1.318, 
p = 0.272). However, there was a significant difference 
between healthy and stroke groups (F(1, 31) = 10.212, p = 
0.003). One-way ANOVA was used to compare the difference 
of fApEn in each electrode. The results revealed a significant 
difference in FC-i (p = 0.002), FC-c (p = 0.042), C-i (p = 
0.006), C-c (p = 0.04), and CP-c (p = 0.005). There was no 
significant difference in CP-i (p = 0.11) between the two 
groups. In Fig. 3B, fApEn of EEG from the three electrodes 
was applied to plot the scatter diagram of stroke patients at the 
ipsilesional hemisphere (blue points) and healthy subjects at 
the dominant hemisphere (red points). The dimension of the 
scatter diagram was reduced by LDA from 3-D to 2-D (Fig. 
3C). The points from the two groups could be well separated. 
Fig. 3D shows the distribution of reduced dimension datasets 
of the stroke and healthy groups. The green and yellow curves 
mark the normal distribution fitting for the datasets of healthy 
and stroke subjects, respectively. EEG fApEn has good 
performance for differentiating stroke patients from healthy 
subjects, with a classification accuracy of 84.85%. 

 

Figure 3. (A) Comparison of EEG fApEn between stroke patients at 
ipsilesional and contralateral hemisphere, and healthy subjects at dominant 
hemisphere. (B) Scatter diagram of EEG fApEn in stroke-ipsilesional 
hemisphere and healthy-dominant hemisphere. (C) Linear Discriminant 
Analysis was applied to project EEG fApEn into two-dimensional space. (D) 
The distribution and normal distribution fitting of dimensional reduced EEG 
fApEn of the healthy and stroke group. 

IV. DISCUSSION 

Stroke-induced neuron death and changes in neural 
pathways affect electrophysiological signals generated from 

(A) (B) 

(C) (D) 

(A) (B) 

(A) (B) 

(C) (D) 
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the brain. This study investigated the changes in EEG rhythms 
and complexity induced by chronic stroke and the EEG index's 
performance in distinguishing stroke patients from healthy 
participants. Alpha rhythm and EEG complexity showed 
significant differences between stroke patients in ipsilesional 
hemisphere and healthy subjects in dominant hemisphere (ps 
< 0.05). These two indexes, especially EEG complexity, 
demonstrated significant discrimination ability (accuracy of 
65.70% on alpha rhythm and 84.85% on EEG complexity).  

A. Abnormal EEG Alpha rhythm in chronic stroke patients 

In this study, stroke patients had significantly higher alpha 
rhythm in both ipsilesional and contralateral hemispheres. 
There was no significant difference in beta, delta, and theta 
rhythms between healthy subjects and stroke patients in both 
hemispheres. Numerous studies have investigated abnormal 
EEG rhythms in Alzheimer’s disease [13], autism spectrum 
disorder [14], and depression [15]. Generally, these studies 
reported that alpha rhythm plays an important role in 
distinguishing patients from healthy subjects, which is similar 
to the results of this study. Research on stroke-related 
abnormalities in EEG rhythms is relatively few. Stepien et al. 
reported decreased ERD of alpha oscillations for the affected 
pericentral sensorimotor areas in acute cortical strokes 
compared to those of a control group [16]. In addition, within 
the cortical stroke group, the ipsilesional hemisphere showed 
a smaller alpha-ERD compared to that of the contralateral 
hemisphere. In contrast, EEG signals were acquired in the 
resting state in this study reflect the spontaneous brain state, 
and the stroke patients recruited in this study were all in the 
chronic phase. Nevertheless, our results agree with those of 
previous studies. Besides, it worth to note that although alpha 
rhythm was significantly different between stroke and healthy 
participants, it had poor performance on discriminating stroke 
patients from healthy participants, with a classification 
accuracy of 64.70%.  

B. Abnormal EEG complexity in chronic stroke patients 

fApEn, as a robust measure of signal complexity, has been 
applied for analyzing bio-signals, including EEG [17], EMG [6], 
and ECG [18]. For fApEn calculation, there are three important 
parameters: N, r, and m. N refers to the length of input data. A 
too small N value may not be sufficient for robust estimation, 
while too large N value may import signals without event-
related information, which reduces its effectiveness in 
identifying the disease. Cao et al. selected N as 800 in EEG 
fApEn to identify Alzheimer’s disease [8]. In Fig. 2A, fApEn 
curve varied abruptly when N was less than 600 while it 
trended to become stable when N was more than 600. 
Combined with the selection of N in previous studies and 
testing results in this study, N was set as 1000. For the 
tolerance, r,  0.1 < r < 0.25 is recommended in many studies [6, 

8, 10, 17, 18]. A series of earlier studies applied either local or 
global tolerance r [19]. For the resting state applied in this study, 
EEG amplitudes varied little over time, suggesting that the 
local tolerance scheme should be more suitable for static 
situations in this study. m refers to template length. m was 2 in 
this study, which is the typical choice consistently used in 
majority of the literature. This was also recommended by 
Pincus and Goldberger for approximate entropy [20] and by 
Yentes et al. for sample entropy [21].  

For all EEG-related indexes discussed in this paper, EEG 
complexity generated the best performance for distinguishing 
stroke patients from healthy subjects with a classification 
accuracy of 84.85%. The EEG fApEn was significantly lower 
in stroke patients than healthy subjects. Entropy-related 
algorithms measure the amount of information produced by a 
stochastic source of data. Thus, the loss of entropy in EEG may 
be attributed to neuronal death, loss of synaptic connections, 
and the general effects of neurotransmitter deficiency [17]. 
These results also highlight the possibility that fApEn could be 
used as a novel evaluation tool to facilitate the evaluation of 
brain disorders by quantifying the complexity of brain signals.  

C. Limitations and future directions 

A larger sample size of chronic stroke patients should be 
recruited to further confirm the clinical relevance of alpha 
oscillation and EEG fApEn. After method validation, a user-
friendly interface and easy-to-use instructions will be required 
to facilitate its application in the clinic. 

V. CONCLUSION 

In this study, EEG alpha oscillation and fApEn were 

significantly different between stroke patients and healthy 

participants (ps < 0.05). In these participants, EEG fApEn had 

the best performance (accuracy: 84.85%) on differentiating 

stroke patients from healthy participants. This study not only 

compared the existing measurements of neurological changes 

caused by stroke, but also provided a potential method to 

evaluate alterations in the properties of the injured brain, 

which may be useful for designing intervention plans in stroke 

rehabilitation.  
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