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Abstract— Many patients with mental illnesses character-
ized by impaired cognitive control have no relief from gold-
standard clinical treatments resulting in a pressing need for
new alternatives. This paper develops a neural decoder to
detect task engagement in ten human subjects during a conflict-
based behavioral task known as the multi-source interference
task (MSIT). Task engagement is of particular interest here
because closed-loop brain stimulation during those states can
augment decision-making. The functional connectivity patterns
of the electrodes are extracted. A principal component analysis
of these patterns is carried out and the ranked principal
components are used as inputs to train subject-specific linear
support vector machine classifiers. In this paper, we show that
task engagement can be differentiated from background brain
activity with a median accuracy of 89.7%. This was accom-
plished by constructing distributed functional networks from
local field potentials recording during the task performance.
A further challenge is that goal-directed efforts take place
over higher temporal resolution. Task engagement must thus be
detected at a similar rate for proactive intervention. We show
that our algorithms can detect task engagement from neural
recordings in less than 2 seconds; this can be further improved
using an application-specific device.

I. INTRODUCTION

Neuropsychiatric disorders are the leading cause of dis-
ability in the United States; about one in every five American
adults experiences mental illness. Existing treatments for
mental illness are less than 50% effective, which leaves many
patients with behavioral disorders with degraded well-being
[1]. The ineffectiveness of existing treatments is partly due
to a lack of mechanistic understanding of the disorders and
the consequent inability to address the cognitive symptoms.
Dysfunctional cognitive control characterizes a wide range

The data were originally collected with support from the Defense
Advanced Research Projects Agency (DARPA) under Cooperative Agree-
ment Number W911NF-14-2-0045 issued by ARO contracting office in
support of DARPA’s SUBNETS Program. S. Avvaru was supported by the
MNDrive Neuromodulation Research Fellowship. A.S. Widge acknowledges
additional research support from the MNDrive Brain Conditions program,
the UMN Medical Discovery Team on Addiction, and the National Institutes
of Health (R01NS113804, R01MH123634). All views presented herein are
those of the authors, not the policy of any government agency or other
funding body.

This research was supported in part by the National Science Founda-
tion under grant number CCF-1954749.

S. Avvaru and K. K. Parhi are with the Department of Electrical and
Computer Engineering, University of Minnesota, Minneapolis, MN 55455,
USA (email: avvar002@umn.edu and parhi@umn.edu).

N. R. Provenza is with Brown University School of Engineering,
Providence, RI, USA

A. S. Widge is with the Department of Psychiatry and Behavioral
Sciences, University of Minnesota, Minneapolis, MN 55455, USA

of mental disorders such as depression, addiction, anxiety
disorders, autism spectrum disorders, and schizophrenia [2]–
[6]. Therefore, there is a pressing need to study the neuro-
logical mechanisms underlying these disorders and develop
new ways to rectify impaired cognitive control. Effective
cognitive control involves restricting and controlling default
responses in favor of a more desired adaptive response.

Electrical deep brain stimulation (DBS) has shown some
promise in modulating the brain circuits underlying abnormal
behaviors. It has been proposed as a more effective approach
for treating mental illnesses such as Parkinson’s disorder,
major depressive disorder (MDD), and obsessive-compulsive
disorder (OCD) [7]–[9]. However, it suffers from ambiguous
clinical outcomes, which limits its usage [8]. Therefore,
further research is required to understand its mechanisms
of action fully. Additionally, the optimal parameters of stim-
ulation are still unknown. Increasing evidence suggests that
adapting DBS parameters to a desired psychological effect,
commonly known as closed-loop DBS, can be helpful [10]–
[12]. Since stimulation during healthy activity can interfere
with normal function, it is critical to identify mental states of
cognitive effort (e.g., decision making during a task) to target
for intervention. However, there is no established signature
for engagement in mentally demanding tasks.

This paper decodes local field potential (LFP) signals
recorded from ten participants performing the multi-source
interference task. The goal is to differentiate task engagement
from background mental activity. Brain connectivity can be
used to discover biomarkers that distinguish psychiatric dis-
orders [13]–[15]. To this end, LFP based functional networks
were utilized. Reliable detection of task-engagement can
provide objective biomarkers to trigger stimulation. Thus,
it could facilitate the development of closed-loop neuro-
modulation to prospectively bias a decision-making process
before it begins. A prior study showed that task and rest
states could be separated [16]. However, we found that the
analysis in [16] suffers from a few drawbacks. The algorithm
suffers from data-leakage, which results in an unreliable
evaluation of the classifiers. More specifically, (1) the feature
extraction utilizes test data that should be independent of
the training data, and (2) the training and test data were not
temporally separated. This paper outperforms the previous
approach by identifying task engagement with 89.7% median
classification accuracy.

The rest of the paper is organized as follows. Section II
describes the task, data and methods. Section III presents the
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Fig. 1: The Multi-Source Interference Task (MSIT).

results. Section IV concludes the paper.

II. MATERIALS AND METHODS

A. The Multi-Source Interference Task (MSIT)

The multi-source interference task is a well-established
paradigm that involves multiple dimensions of cognition,
including but not limited to attention, object recognition, and
decision making, and is a useful tool to study the network
basis of cognition [17]. Its sensitivity to electrical stimulation
makes it a good candidate task to study cognitive control
[11], [18]. In an MSIT trial (see Fig. 1), the participants are
presented with a fixation cross for 2 seconds followed by
a stimulus in the form of 3 digits – one of which is the
‘target.’ Two of the three numbers, known as ‘distractors,’
have the same value. The target is either 1, 2, or 3. The
experiment includes ‘congruent’ and ‘incongruent’ trials. In
the congruent condition, the distractors are always ‘0’, and
the target’s position matches its value. In the incongruent
(also known as interference) condition, the distractors are
picked from potential targets, and the position of the unique
target is different from its keyboard position (Simon effect).
In a successful trial, the participant reports, via a button press
on a keypad, the target’s value regardless of its position.
Examples of congruent and incongruent trials are presented
in Fig. 1(a).

The experiment consists of up to 5 blocks of trials, with
approximately 32 or 64 trials in each block (Fig. 1(b)).
Signals recorded between the blocks, before the first block,
and after the last block were labeled as non-task data. The
task contained a roughly equal number of congruent and
incongruent trials. Median success rates of 100% ± 2.47%
and 97.1 ± 5.52% were reported during congruent and
incongruent conditions, respectively [16].

B. Data Description

The experiment included ten voluntary participants with
long-standing epilepsy who performed the task while hos-
pitalized. All procedures were approved by the local in-
stitutional review boards at the Partners Healthcare (Mas-
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Fig. 2: Functional network of a randomly chosen task and
non-task segments from one subject constructed using local
field potential signals from 64 channels.

sachusetts General Hospital) and the US Army Human
Research Protection Office. Depth electrodes with diameters
varying between 0.8 mm and 1 mm were implanted for
epilepsy monitoring. Local field potentials were recorded uti-
lizing these depth electrodes during the task and rest periods
with free behavior. The signals were referenced to a scalp
EEG electrode. Each electrode had 8–16 platinum/iridium
contacts that measured LFP signals at a 2 kHz sampling
rate. There were at least five such electrodes (maximum of
nine) in each hemisphere. Channels with excessive line noise
or other visually noticeable artifacts were eliminated. Line
noise and its harmonics were removed via filtering in the
remaining channels. The EEG signals were also bipolar re-
referenced for the analysis. Further details about the data can
be found in [16].

C. Class Label Assignment

The neural activity recorded during MSIT trials is referred
to as task data, and the data recorded during rest periods
(before or after trial blocks) is referred to as non-task
data. To differentiate between the task and non-task states,
the signals were divided into multiple task segments and
non-task segments. The time when the fixation cross was
presented during a trial was marked as the trial’s start.
The time duration between two consecutive fixation crosses
determined the length of each trial. The duration of trials
varies depending on the subjects’ reaction times. 3.8-second
(minimum trial duration for most subjects) time segments
from every trial’s start were labeled ‘task’ data. The signals
recorded during rest periods were windowed into ‘non-task’
segments with a window length equal to the minimum task
duration. Overlapping windows were used when the number
of non-task segments was less than the number of task
segments. If the amount of task data was less than the amount
of non-task data, only a subset of the non-task data was used
for classification. Thus, the two classes were balanced to
make sure the classifiers are not biased.

D. Feature Extraction

Functional networks were then constructed for each
task/non-task segment by computing its correlation matrix.
Fig. 2 depicts examples of the task and non-task func-
tional networks in the form of adjacency matrices. Each
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Fig. 3: Two-dimensional scatter plot of two features before
and after PCA from task and non-task data of subject-1.

entry in an adjacency matrix represents the strength of the
connection (also known as the edge strength) between the
two channels given by its row and column numbers. The
adjacency matrices are symmetric matrices indicating that
they are undirected correlational networks. The diagonals
were set to zeros for better visualization. To extract useful
patterns in these networks and eliminate redundancy, we
employ principal component analysis (PCA). PCA is a
dimensionality reduction method that attempts to reduce the
number of variables while preserving as much information
as possible. The resultant principal components are unique
linear combinations of the edge strengths such that their
variance is maximized. Maximizing the variance aids in
differentiating between the two states: task and non-task. The
PCA coefficients were computed only using the training data
to ensure no information leakage into the test data.

III. RESULTS

A. PCA Features

Functional networks shown in Fig. 2 contain task-specific
patterns of brain activity. A timeseries with N channels
represents a network with N nodes, and

(
N
2

)
connections.

For example, a 64-channel recording would create 2016
features. The high dimensionality of the data makes it
challenging to identify the patterns. PCA transforms the

Fig. 4: Accuracy, sensitivity and specificity of task vs. non-
task classification.

feature space such that the variance of the projections (in the
new space) is maximized. The resultant features are usually
more separable, aiding the classification process. Fig. 3(a)
illustrates that when edge strengths are used as features, the
two classes are not easily separable. In Fig. 3(b), we present
a two-dimensional scatter plot of the first two principal
components of subject-1. It can be observed that the task
and non-task data are separable in the resultant feature space.
Thus, PCA helps in finding patterns that differentiate task
and non-task functional networks.

B. Classification Results

For each subject, the data were split into ten subsets
via sequential sub-sampling to ensure that test samples are
not in the training samples’ temporal vicinity. One of the
ten folds acts as the test set in each iteration, while the
other nine act as the training data. This procedure, known
as ten-fold cross-validation, ensures that all the data are
tested and makes the classifiers less prone to overfitting. The
PCA features were used as inputs to linear support vector
machine (SVM) classifiers. The mean classification accuracy
of the ten test sets was recorded. This process was repeated
by changing the number of features/inputs from 1 to 150.
The features with the highest cross-validation accuracy are
considered the optimal features. Results of the classification
for all subjects are presented in Table I. The median task
vs. non-task prediction accuracy is 89.7 ± 6.5%. This is a
significant improvement over the 78.1 ± 7.39% reported in
[16]. The task and non-task accuracies are 93.7 ± 6.05%
and 90.2± 9.69%, respectively. The summary of prediction
accuracies is presented in Fig. 4.

C. Classifier Runtimes

Table I shows that the number of channels and, conse-
quently, the number of optimal features, i.e., principal com-
ponents (PCs), varies among the subjects. The computational
complexity of the decoders is relatively low due to the
simplicity of the approach. We computed the time taken to
process a randomly chosen LFP segment, extract the features
and determine its classifier outcome for each subject. These
classifiers can be used to detect the task engagement in
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TABLE I: Accuracy of task vs. non-task classifiers for the
ten subjects. Sensitivity and specificity represent the task and
non-task accuracies, respectively. Random label-assignment
would result in a baseline accuracy of 50%.

Sub. Num. ch. Acc. Sens. Spec. Num. of PCs
1 64 87.17 95.22 79.13 36
2 150 92.27 94.55 90.00 92
3 141 86.49 92.78 80.53 113
4 162 98.75 100.00 97.50 14
5 189 85.20 79.17 90.77 13
6 183 94.29 95.71 92.86 53
7 130 77.08 86.94 67.22 115
8 194 93.93 91.43 96.43 73
9 195 93.54 96.67 90.42 108

10 126 82.63 87.32 77.69 149

TABLE II: The time taken to predict whether the participant
is engaged in the MSIT or not. Each column shows the mean
and standard deviation of 100 runs of the algorithm on a 3.8
second multidimensional segment

Subject 1 2 3 4 5 6 7 8 9 10
µ(sec.) 2.09 1.99 2.04 1.57 1.65 1.88 1.89 1.42 1.55 1.50
σ(sec.) 0.09 0.15 0.07 0.09 0.13 0.18 0.09 0.03 0.11 0.04

2 seconds or less, as illustrated in Table II. The runtimes
were calculated using MATLAB programs implemented on
a general-purpose machine with an Intel Core i7-8565U
processor and 16 GB memory.

IV. DISCUSSION AND CONCLUSION

Cognitive control refers to the effortful deployment of
cognitive resources for adaptive response to the environ-
ment. Intact cognition consists of interrelated executive func-
tions, including updating (i.e., monitoring working mem-
ory), inhibition (resisting prepotent responses), and shifting
(switching between mental states) [19]. There is no well-
defined neural signature for the mental effort associated with
these coordinated cognitive processes that facilitate decision-
making. Several studies show that cognitive control deficits
are central symptoms in many psychopathological condi-
tions, including schizophrenia, depression, and addiction.
Interventions such as DBS that target the cognitive control
networks could be influential for mitigating symptomatic dis-
tress, functional impairments, and diminished quality of life
prevalent across psychiatric disorders. Developing effective
therapeutics through adaptive neuromodulation requires rapid
detection of focused mental activity.

This paper demonstrates that such mental states are en-
coded in the functional connectivity of the brain. Fig. 3
illustrates that neural correlates of task-related mental effort
can be separated from background activity. The results in Fig.
4 and Table I show that task engagement can be detected with
high accuracy. The proposed approach attains a median accu-
racy of 89.7%, a substantial increase from the 78.1% reported
in [16]. There is some variation between the subjects, partly
due to variation in the electrode implant setups; the number
of channels varied between 64 and 195. Moreover, the non-
task data involved recordings during free-behavior without

any restrictions or standardization between the participants.
This heterogeneity in the non-task activity might explain why
the classifiers have slightly higher sensitivity than specificity.
A limitation of the current work is that it is limited to a
single task. The future work will be focused on applying the
algorithm to multiple cognitive tasks.
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