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Abstract—The wide spread of coronavirus pneumonia
(COVID-19) has been a severe threat to global health since
2019. Apart from the nucleic acid detection, medical imaging
examination is a vital diagnostic modality to confirm and
treat the disease. Thus, implementing the automatic diagnosis
of the COVID-19 bears particular significance. However, the
limitations of data quality and size strongly hinder the clas-
sification and segmentation performance and it also result in
high misdiagnosis rate. To this end, we propose a novel full
scale attention mechanism (FUSA) to capture more contextual
dependencies of features, which enables the model easier to
classify positive cases and improve the sensitivity. Specifically,
FUSA parallelly extracts the information of channel domain
and spatial domain, and fuses them together. The experimental
study shows FUSA can significantly improve the COVID-19
automated diagnosis performance and eliminate false negative
cases compared with other state-of-the-art ones.

I. INTRODUCTION

The large outbreak of Coronavirus Disease 2019 (COVID-
19) has caused a global health emergency. This disease
causes respiratory illness from mild fever, cough, nasal
congestion, fatigue to progressive pneumonia, and even
severe respiratory failure and death [1]. Chest computed
tomography (CT) image examination is a rapid and accurate
method to diagnosis COVID-19. Thus, automatically and
efficiently detecting COVID-19 infections area from CT
image are meaningful for the proper management and
treatment of patients.

Nowadays, deep learning based algorithms have achieved
great success in auxiliary medical image diagnosis, such
as the lesion recognition in chest CT image, which even
perform better than radiologists [2]. Several deep learning
models also have been proposed for COVID-19 diagnosis,
which can be broadly classified into two categories based
on different tasks. One is the infection positive levels
classification from suspected patients, while the other is the
lesion area segmentation of lung. Hasan et al. [3] proposed a
feature extraction method of Q-deformed entropy to classify
COVID-19 positive image. Hussain et al. [4] proposed a
22-layer convolutional neural network CoroDet and reported
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its performance in a set of COVID-19 classification tasks.
Pathak et al. [5] utilized transfer learning to overcome the
sample unbalance problem. Singh et al. [6] established
a CNN based on multi-objective differential evolution to
predict whether CT is coronet positive or not. Wang et al. [7]
proposed COVID-net with projection-expansion-projection-
extension model to enhance the network performance and
reduce the computational complexity. Due to the information
loss in convolution, directly classification methods still have
high false negative rate. As for the segmentation task, Fan
et al. [8] designed a parallel partial decoder to aggregate
global semantic information and proposed a semi-supervised
architecture to enhance the segmentation result. He et al. [9]
introduced a self-trans method for self-supervised learning
to achieve better feature representation and reduce the
risk of overfitting. Gozes et al. [10] combined 2D and 3D
segmentation to build a robust segmentation model. Chen et
al. [11] applied residual connection neural network in U-Net
to enable the model to learn more robust features. Zheng et
al. [12] proposed a weak supervision learning architecture
to reduce dependence of accurate label. Saeedizadeh et al.
[13] improved U-Net segmentation result through adding
extra regularization in loss function. However, current
segmentation methods cannot completely aggregate the
features within the CT images, which also leads to high
false negative results.

This paper aims to propose a novel full scale attention
(FUSA) mechanism to capture enough contextual depen-
dencies of characteristic from chest CT image. Firstly, we
design the FUSA module by fusing the enhanced information
of the channel domain and the spatial domain. Next, for
COVID-19 classification and segmentation tasks, we propose
two deep learning architecture FUSA-ResNet and FUSA-
ResUnet respectively. Finally, both the comparative study
and visualization results show our method can dramatically
improve the COVID-19 diagnosis performance. In particular,
our method can suppress the false negative results and has a
higher recall.

II. METHODS
A. Full Scale Attention Mechanism

In this section, we want to build a module to capture
the contextual information as much as possible, so that
the model evaluates the global features and obtain the
areas that the model should pay attention to at the global
level. In most studies, only average pooling is used for
the preliminary pooling. In order to enable the module
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to integrate more layers of characteristic information, we
consider average pooling and maximum pooling at the same
time. The extracted channel domain features are mapped
to the same dimension with the number of channels as the
original feature image again through the full connection
layer, while the spatial domain features are mapped through
the convolution layer of 1 x 1 convolution kernel to
obtain the single-channel feature with the same size as
the spatial feature. The attention mechanism of channel
domain and spatial domain are not simply superposition.
It is considered to join the features of channel domain
and spatial domain, and then let the network learn how to
integrate the features of channel domain and spatial domain
through the convolutional layer. However, the dimensions
of channel domain features and spatial domain features that
can be used at this time are different. In this paper, channel
domain features and spatial domain features are expanded
to the shape of the input feature map and then stitched.
The channel domain feature uses the value of the feature
at the corresponding channel location to fill all the values
of the same channel. The spatial domain feature uses the
value of the feature in the corresponding spatial position to
fill the value of the corresponding position of all channels.
After splicing, the new feature map is reduced to the size
of the original feature map through a 1 x 1 size convolution
kernel to get the result of feature fusion of channel domain
and spatial domain, in which the feature fusion strategy
is completely left to the network adaptive learning. In
order to get a smoother attention feature map, we utilize
a sigmoid layer after fusion layer. It eventually outputs an
attention feature map that represents the importance of the
information on a global scale.

The schematic diagram of full scale attention mechanism
(FUSA) is shown in Fig. 1, assuming that the shape of
the original feature map is H x W x C. For the channel
domain branch, the features extracted by maximum pooling
and average pooling are stitched together to obtain a feature
with a length of 2C. The full connection layer is used
to re-map it to a length of C, and then it is expanded to
the shape of the original feature map. For spatial domain
branches, the features extracted by maximum pooling and
average pooling are spliced together to obtain a feature
map with the shape of H x W x 2. The convolution layer
with the convolution size of 1 x 1 is used to remap the
feature map with the size of H x W x 1, and then it is
expanded to the shape of the original feature map. The
channel domain is connected to the expanded feature map
of the spatial domain, and the size of the feature map after
splicing is H x W x 2C. Since it needs to be transformed
into the same feature as the input shape, the convolution
and Sigmoid operation are used to make the shape of the
convolution H x W x C, and Sigmoid smoothing is done
to finally get the attention feature map.
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B. Classification Model Design

For the COVID-19 classification task, we combine FUSA
and classic deep learning model ResNet [14], by replacing
the residual block with the FUSA-Residual block. As shown
in Fig. 2, each residual block contains a FUSA module in
the end, to adjust the input feature map globally. Then sum
up the feature map adjusted by the FUSA module and the
feature map after the residual connection.
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Diagram of FUSA-ResNet-50 architecture for COVID-19 classifi-

C. Segmentation Model Design

For the COVID-19 segmentation task, we designs the
FUSA-ResUnet model based on the FUSA module and the
U-Net model [15]. As shown in Fig. 3, the basic module
of each layer is replaced by the global attention residual
module for the ordinary U-Net model. The network is mainly
composed of the encoding part of feature extraction and
the decoding part of parsing and upsampling. The encoder
module is composed of four global attention residuals,
each global attention residual module includes two groups
of convolution, batch normalization layer, ReLU activation
function, and output the sum result of the FUSA module.
Moreover, each global attention residuals module is followed
by a maximum pooling to subsample the feature.
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After the image enters the network, it will first pass
through a residual module to obtain the feature with a
channel number of 64. After that, the number of channels of
the feature map output by the four global attention residual
modules is 128,256,512,1024 in turn. The decoder module is
basically the same as the encoder module. First, the feature
is sampled to the feature size of the corresponding layer of
the encoder, and then the multi-scale context information of
different network levels is integrated through feature splicing.
Then, the intermediate result of the decoding sub-module is
obtained through the global attention residual module.
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Diagram of FUSA-ResUnet architecture for COVID-19 Segmen-

III. EXPERIMENTS AND RESULTS
A. Dataset

The dataset in this paper is provided by the National Insti-
tutes of Health (NIH) in the United States for the purpose of
research on artificial intelligence for COVID-19 CT image
[16]. And it is annotated by the National Children’s Hospital
in collaboration with Nvidia, which presents CT data from
199 patients with accurate delineation. In this paper, 2D
CT slice images are used. Each slice is resized to a square
512 x 512 image. The dataset includes a total of 13705 CT
image slices, in which 4981 slices contains positive COVID-
19 lesions. The positive sample accounts for 36.34% in the
dataset, and the area containing focal areas accounts for
1.14% of the total area.

B. Data pre-processing and Data augmentation

Due to there are large areas of background in the original
data, the random clipping strategy is based on foreground
region for the segmentation task. Considering the data im-
balance, the up-sampling method is adopted to try to balance
the number of samples of positive and negative lesions. At
the same time, we set random cutting at different scales to
enable the model to focus more on the lesions in some small

areas. The clipping method we used is to select 1/2 size, 1/4
size and 1/8 size of the original picture respectively to clip
the original picture, and fill the clipped picture back to the
size of the original image.

C. Classification Task

In order to analyze the effectiveness of the proposed
model, we compared the performance of FUSA-ResNet-50
with VGG-net, ResNet-50, DenseNet and MobileNet in the
classification task. Moreover, we also set the experiments
of FUSA-ResNet-18 as a comparison to ResNet-18. Tab. I
lists the comparative algorithms performance on COVID-19
CT classification task, which reports the accuracy, precision,
recall, F1 score and AUC respectively. Among them, the
proposed FUSA-ResNet50 achieved the highest accuracy of
88.17%, F1 socre of 84.47% and AUC of 0.94. FUSA-
ResNet18 model reaches the best recall of 80.13%. Compar-
ing the FUSA-ResNet-50 with ResNet-50 model, it can be
found that the FUSA module improves the accuracy rate of
the model by 1.42% and the recall rate by 4.7%. In COVID-
19 diagnosis, we need eliminate the false negative as much
as we can to prevent the infection, so the recall rate needs
to be as high as possible. The increase of recall rate means
that the addition of FUSA model can bring better results
for the model. Comparing the proposed FUSA-ResNet-18
with the ResNet-18, it can be found that the FUSA module
in this paper improves the accuracy rate of the ResNet-
18 model by 0.7% and the recall rate by 3.89%. Through
the ablation experiments with ResNet-50 and ResNet-18,
the FUSA module proposed in this paper can improve the
accuracy of the model, and it can significantly improve the
recall rate. It shows that the proposed FUSA module can
effectively reduce the rate of missed diagnosis of the model,
which is of great significance for the clinical application.

TABLE I
COMPARATIVE STUDY OF CLASSIFICATION RESULTS.

Model Acc Precision Recall F1 AUC
VGG-Net 81.80% 89.16% 62.42%  73.43% 0.90
DenseNet 84.78% 89.30% 70.19%  78.80% 0.92
MobileNet 86.75% 86.97% 7895%  82.77% 0.93
ResNet-18 86.89% 89.69% 76.24%  82.42% 0.93

FUSAResNet18 | 87.59% 88.00% 80.13%  83.88% 0.94
ResNet-50 86.75% 90.34% 75.16%  82.05% 0.93
FUSAResNet50 | 88.17% 89.66% 79.86%  84.47% 0.94

D. Segmentation Task

In COVID-19 CT image segmentation task, we set
the experiments to compare the performance of our pro-
posed FUSA-ResUnet aganist LinkNet [17], ResUNet [15],
Deeplabv3 [18] and PSPNET [19], as shown in Tab. II. The
dice coefficient, precision and recall of each algorithm are
reported. With full scale attention module, FUSA-ResUnet
reaches 89.76% dice, 88.82% precision and 77.38% recall re-
spectively. In terms of the comparison with ResUnet, FUSA-
ResUnet has a 1.93% increasing in dice coefficient, 4.55%
higher precision and a significant 9.72% recall improvement.
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TABLE I
EVALUATION OF SEGMENTATION RESULTS.

suspected cases. FUSA-ResNet-50 achieved 88.17% testing
accuracy for COVID-19 classification and 89.76% dice for
segmentation of infection lesions. In this work, we only
considered 2D CT slice image for the tasks in this paper.
With the introduction of 3D contextual attention information,

Model Dice Precision Recall
LinkNet 87.41% 88.01% 63.95%
ResUNet 87.83% 84.27% 67.66%
PSPNet 88.67% 86.47% 70.25%

DeepLabV3 89.29% 83.11% 75.08%
FUSA-ResUnet | 89.76% 88.82% 77.38%

E. Result Visualization and Discussion

The visualization was carried out through the CT labeling
software ITK-SNAP. The comparison of the segmentation
result of different model is shown in Fig. 4. The blue
lesions are correct prediction (true positive), the green lesions
are incorrect prediction (false positive), and the red lesions
are misdiagnosed prediction (false negative). Basically, the
FUSA-ResUnet can have a robust segmentation result, which
eliminate most false negative area in ResUnet. The model
could achieve a better segmentation result on some large
lesions in comparison of other methods. However, in terms
of lesion in early symptoms, it still have misdiagnosis area.
In other words, there are fewer green regions and more red
regions in the segmentation results. This is consistent with
the fact that the precision of the model is relatively high and
the recall is relatively low in the indicators shown in Tab. II.

FUSA-
ResUnet

Source Image LinkNet U-Net PSPNet DeepLabV3

Fig. 4. Visualization of segmentation results.

IV. CONCLUSION

In conclusion, we proposed a full scale attention mecha-
nism FUSA to enhance the deep learning performance in
COVID-19 diagnosis from CT images. For classification
and segmentation tasks, our improved model FUSA-ResNet
and FUSA-ResUnet were tested on a public COVID-19
CT dataset respectively. The experimental results showed
promising results that attention mechanism can significantly
improve the model performance. Moreover, FUSA based
methods can effectively reduce the false negative rate, which
was also vital for epidemic control by finding as much as

the model may be able to perform better.
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