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Abstract— According to the urgent need for rapid detection 

and identification of foodborne bacteria to prevent public health 

event, a microfluidic electrical impedance flow cytometry 

assisted with convolutional neural network (ConvNet) based 

deep learning algorithm was proposed in this study to analyze 

the impedance signals of bacteria. With the assistance of the deep 

learning algorithm, Escherichia coli (EPEC), Salmonella 

enteritidis (SE) and Vibrio parahaemolyticus (VP) were identified 

with an accuracy of 100%. The proposed impedance based 

analysis system can be potentially applied for pre-classification 

of different subtypes of bacteria in a label-free manner. 

 
Clinical Relevance—The whole platform can be miniaturized 

and applied for point-of-care testing (POCT) of pathogenic 

bacteria detection. 

I. INTRODUCTION 

According to the large number of illness every year due to 
infections of foodborne pathogens [1-3], detection and 
classification of pathogenic bacteria play important role in 
food safety monitoring [4] and clinical treatment [5-6]. 
Conventional bacteria detection methods include plate 
culturing in selective medium [7], mass spectrometry (MS) 
[8], enzyme linked immunosorbent assay (ELISA) [9] and 
polymerase chain reaction (PCR) [10]. Recently, benefiting 
from the rapid progress of microfluidic technology, a variety 
of novel biosensors were developed to improve the accuracy 
and efficiency of bacteria detection including optical [11] and 
electrical [12] methods.  

Microfluidic impedance flow cytometry (IFC) [13-14], a 
major branch of electrical biosensors, has emerged as a label-
free, low-cost, high-throughput method for rapid particle 
sizing [15] and cell analysis [16]. When cells pass through the 
sensing zone, the resistance between the electrodes changes 
accordingly, resulting in electrical pulses related to the size 
and other dielectric parameters of cells. However, it is still 
challenging to process and analyze the huge amount of 
impedance data (including time domain and frequency 
domain), especially for bacteria classification applications. 
Therefore, an accurate and rapid data analysis method is 
urgently needed. 
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Deep learning, as a representative algorithm of artificial 
intelligence (AI) [17] and an unsupervised learning model, has 
been applied for big data analysis and unknown sample 
identification based on the weight value of neurons in all 
network layers. Due to the high accuracy and efficiency for 
data processing, studies have been carried out combining deep 
learning with microfluidic systems for complex sample 
classification [18-19]. 

In this paper, a microfluidic impedance flow cytometry 
was proposed for Escherichia coli (EPEC, CICC 10664), 
Salmonella enteritidis (SE, CICC 21513) and Vibrio 
parahaemolyticus (VP, CICC 21617) analysis (All biological 
experiments were carried out in a BSL-2 laboratory of Wuqing 
District Center for Disease Control and Prevention, Tianjin, 
China). The impedance data of EPEC, SE and VP was 
analyzed and classified using a ConvNet deep learning 
algorithm. After designing and training the ConvNet model 
with randomly picked impedance data of three types of 
foodborne bacteria, the discrimination accuracy was  96% for 
the training data and the classification accuracy was 100% for 
the unlabeled data testing. With the assistance of the deep 
learning algorithm, the proposed system can be potentially 
applied for pre-analysis of different bacteria subtypes by 
building impedance databases obtained from various bacteria 
collected by microfluidic chip. 

II. EXPERIMENTAL SETUP 

The schematic diagram of the proposed the microfluidic 
electrical impedance flow cytometry system is shown in 
Figure 1a. The microfluidic chip consists of a microchannel, 
which is 15 μm in width and 9.4 μm in height. A three-
electrodes sensing strategy was employed with the electrode 
width of 15 μm and the spacing of 15 μm. When an AC signal 
was applied to the middle electrode, the differential current 
was pre-amplified 1000 times by a pre-current amplifier 
(Zurich Instruments HF2TA, Switzerland) and then measured 
by an impedance analyzer (Zurich Instruments HF2IS, 
Switzerland). When bacteria pass above the sensing 
electrodes, symmetrical characteristic peaks can be recorded 
by the impedance analyzer for further data analysis (Figure 
1b). 
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Figure 1. The schematic diagram of a) the microfluidic impedance flow cytometry device and system for bacteria analysis and b) the characteristic peak signal 
of single bacteria.  

 

III. RESULTS AND DISCUSSION 

In order to test the feasibility of the proposed system for 
bacteria sensing, bacteria counting was carried out by 
measuring bacteria suspensions with a series of 
concentrations. The real-time differential current signal was 
measured under the excitation voltage of 3 V/2.5 MHz and the 
pneumatic driving pressure of 100 mbar. PBS solution was 
used to clean the channel for 20 minutes at 345 mbar pressure 
to remove the residual bacteria of previous test. Each test was 
repeated 3 times. Figure 2a shows the real-time signal of 
bacteria suspensions with increasing concentrations ranging 

from 42 ± 9 CFU/ul to 22441 ± 135 CFU/ul that calculated 

by Equation (1). As the increment of bacterial concentration, 
the number of the electrical peaks increases accordingly with 
a linear relation to bacteria concentration, as shown in Figure 
2b. 

*

* * *

N T
V

L W H t
                                     (1) 

Here, N, T and t refer to the number of peak signals, the time 
interval between the positive and negative pulse, and the 
acquisition time, respectively. 

Due to the differences in the shape, size and other 

biophysical characteristics between various types of bacteria, 

the electrical properties vary accordingly. To make sure that 

the bacteria pass above the sensing electrodes one by one, the 

stock solution was diluted with 10 mM PBS solution to an 

optimal concentration of 52 10  CFU/ml. Figure 3 shows the 

scatter plots of amplitude against phase diagrams of three 

types of bacteria (EPEC, SE and VP) under 2 V excitation 

voltage comprising six different excitation frequencies (100 

kHz, 1 MHz, 2 MHz, 3 MHz, 5 MHz, 8 MHz) with 5 mbar 

pneumatic driving pressure. It is worth noting that, under 

particular frequency, different distributions were obtained, 

yet obvious overlaps between different types still occurred. 

Therefore, it is difficult to directly discriminate different 

bacteria by simply analyzing the impedance of bacteria under 

a single frequency. 

 

Figure 2. a) The real-time signal of four concentrations of EPEC samples. b) 

The linear relation between the number of peaks and the concentration of 

EPEC. 
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Figure 3. The scatter plots of amplitude vs. phase angle of three types of bacteria under excitation frequencies of 100 kHz, 1 MHz, 2 MHz, 3 MHz, 5 MHz and 

8 MHz. 

To improve the performance of bacteria discrimination 

and classification, a ConvNet algorithm, as a representative 

algorithm of deep learning, was employed to process the 

impedance data of different bacteria. As shown in Figure 4, 

the impedance data was transformed into three-dimensional 

matrix data to match the algorithm. The proposed ConvNet 

model includes an input layer, a padding layer, two 

convolution layers, a full connection layer and an output 

layer. The convolution depth was set as 8 layers, and the 

rectified linear unit (ReLU) was used as the activation 

function. ReLU is to complete the nonlinear transformation of 

data and solve the problem of insufficient classification 

ability of linear model. To prevent over fitting phenomenon, 

a dropout algorithm was set 0.2 and used in both convolution 

layers to optimize the number of unnecessary neurons. 

For each type of bacteria, the impedance data was 

randomly divided into two groups, including the training data 

and the testing data (about 450 bacteria for training and 150 

bacteria for testing). The training data was then input into the 

ConvNet network for model training. After the model 

parameters were readily obtained, the test data was input into 

the trained network model to verify the reliability and 

accuracy. As shown in Figure 5a, the accuracy of the training 

result is above 96%, and the prediction accuracy of bacteria 

discrimination is 100% under the excitation frequency of 1 

MHz, 2 MHz, 3 MHz and 5 MHz. For the purpose to show 

the advantages of ConvNet deep learning algorithm in 

bacteria classification combined with impedance data, we 

further input the same identical data into the support vector 

machine (SVM) classification model. As for SVM algorithm,  

 

Figure 4. The structure of convolutional neural network (ConvNet) model for bacteria classification, including an input layer, a padding layer, two convolution 

layers, a full connection layer and an output layer. 
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the accuracy of bacteria classification of the training data is 

around 60%, which is much lower that of the ConvNet 

algorithm. Figure 5b shows the confusion matrix of the 

prediction accuracy of the test data of the three types of 

bacteria under 1 MHz. It is worth noting that the prediction 

accuracy of the three types of bacteria are 100%, revealing the 

advantage and reliability of the ConvNet deep learning 

network assisted microfluidic impedance flow cytometry for 

bacteria classification. 

 
Figure 5. a) Comparison between ConvNet algorithm and SVM algorithm. b) 

The confusion matrix of the bacteria prediction accuracies using the trained 
ConvNet model under 1M Hz. 

IV. CONCLUSIONS 

In this work, a deep learning assisted microfluidic 
impedance flow cytometry was developed for  foodborne 
bacteria analysis. By employing the ConvNet algorithm of 
data analyzing, Escherichia coli, Salmonella enteritidis and 
Vibrio parahaemolyticus were distinguished with a 100% 
accuracy. This study provides a novel method for data analysis 
of impedance measurement, which can be applied as a 
complementary method for bacteria phenotyping studies. 
Furthermore, the proposed method and system can be further 
miniaturized for miniaturize for point-of-care testing (POCT) 
of foodborne bacteria in a rapid and label-free manner. 
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