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Abstract— Using a relatively high model order of independent
component analysis (ICA with 75 ICs) of functional magnetic
resonance imaging (fMRI) data, we have reported a clear effect
of spatial smoothing Gaussian kernel size on spatiotemporal
properties of intrinsic connectivity networks (ICNs). However,
many if not the majority of ICA fMRI studies are usually
performed at low model order, e.g., 20-IC decomposition, as
such low order is generally enough to extract the few networks
of interest such as the default-mode network (DMN). The aim
of this study is to investigate if we can replicate the spatial
smoothing effects on spatiotemporal features of ICNs at low
ICA model order. Same resting state fMRI data that we used
with 75-IC analysis were used here. Spatial smoothing using
an isotropic Gaussian filter kernel with full width at half
maximum (FWHM) of 4, 8, and 12 mm was applied during
preprocessing. ICNs were identified from 20-IC decomposition
and evaluated in terms of three primary features: spatial
map intensity, functional network connectivity (FNC), and
power spectra. The results identified similar effects of spatial
smoothing on spatial map intensities and power spectra at
p < 0.01, false discovery rate (FDR) corrected for multiple
comparisons. Reduced spatial smoothing kernel size resulted
in decreased spatial map intensities as well as a generally
decreased low-frequency power (0.01 – 0.10 Hz) but increased
high-frequency power (0.15 – 0.25 Hz). FNC, however, did not
show a uniform change in correlation values with the size of
smoothing kernel. Notably, FNC between DMNs decreased but
FNC between central executive and visual networks increased
with an increase in smoothing kernel size. These preliminary
findings confirm spatial smoothing influences ICN features
regardless of model order. The discussion focuses on differences
between observed changes at low and high ICA model orders.

I. INTRODUCTION
Earlier studies indicate that preprocessing methods

that are commonly used prior to the analysis of the
functional magnetic resonance imaging (fMRI) may affect
the properties of brain networks [1], [2]. For example, Lui
and colleagues showed that large smoothing kernel may
cause a correlation-based functional overestimation [3]. In
a series of resting state studies that we are presenting along
with this paper, we meticulously examined different features
of brain intrinsic connectivity networks (ICNs) following a
well-established independent component analysis (ICA) at
relatively high model order of 75-IC [4]. Our results revealed
that the level of spatial smoothing clearly affects the spatial
maps, functional network connectivity (FNC [5]), and power
spectra. Considering that most ICA studies are performed on
low model order of, e.g., 20, the aim of the present study
was to determine whether our findings can be replicated for
data analyzed at low ICA model order.
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II. MATERIALS AND METHODS

A. Data Acquisition and Preprocessing

This study was conducted on existing resting state data
from 22 healthy right-handed subjects (ten males, twelve
females, average age 37.73 years) who were scanned with
a 3.0 T MRI scanner with an 8-channel receive-only RF
head coil array (Discovery MR750, GE Medical Systems,
Milwaukee, WI, USA). BOLD fMRI data were acquired
using EFGRE3D pulse sequence (TR = 2s, TE = 30 ms,
flip angle = 76o, acquisition matrix = 64⇥64, field of view
(FOV) = 220⇥220 mm2, slice thickness = 4 mm, gap =
1 mm, total number of slices = 31 slices, 360 volumes,
ascending acquisition). Subjects were instructed to remain
calm and awake as they rested with their eyes closed
and refrain from sleeping. Informed consent was obtained
from all subjects according to institutional guidelines at the
Stanford University, and all data were anonymized prior
to group analysis. None of the subjects had a history of
neurological or psychiatric disorders or metal implants in the
body. Following MR image quality assessment in MRIQC
(Stanford University, USA) [6], data were preprocessed using
SPM12b (Wellcome Department of Cognitive Neurology,
UCL, UK). Preprocessing pipeline included motion and slice
time correction, and spatial normalization into the Montreal
Neurological Institute (MNI) reference space. Data were then
spatially smoothed using a Gaussian kernel with a full-width
at half-maximum (FWHM) of 4, 8, and 12 mm. FWHM of
8 mm was chosen as it is the typical value used in group
ICA fMRI studies, and FWHM of 4 mm and 12 mm were
considered as arbitrary low and high smoothing values.

B. Independent Component Analysis and Post-processing

Group ICA was performed in three steps using the GIFT
toolbox (GroupICAT v4.0c, University of New Mexico,
USA). In the first step, subject-specific data reduction
principal component analysis (PCA) with a standard
economy-size decomposition retained 30 PCs. In the second
step, data were concatenated across time and group data
reduction with expectation-maximization algorithm retained
20 PCs. Infomax ICA algorithm [7] was used and repeated 20
times with random initiation in ICASSO [8], and estimated
group-level ICs were back-reconstructed using GICA3
method. ICNs were identified from artifactual components
following the methodology recommended by Allen et al. [4].
Prior to connectivity analysis (see below), time-courses were
detrended, despiked with AFNI’s 3dDespike and bandpass
filtered at [0.01 – 0.15] Hz.
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Fig. 1. Spatial maps of 10 ICNs from 20-IC decomposition are shown in neurological convention (right is right).

C. ICN Feature Analyses

To define significant brain regions associated with each
ICN, back-reconstructed spatial maps was normalized into
z scores. Next, the z score averaged maps were entered
into second level random effects analysis in SPM12b [9].
Significance threshold was set at p < 0.05 family-wise
error (FWE) corrected for multiple comparisons of voxel-
wise whole-brain analysis. Number of voxels, and the
highest-value and the locus of the peak activation (x, y,
z) in MNI coordinates were saved. Functional network
connectivity (FNC [5]) was performed on IC time courses
using the MANCOVAN toolbox in GIFT by computing
Pearson’s correlation values between pairwise ICNs. Fisher
r-to-z transformation was applied to normalize the FNC
correlation values [4]. Power spectra were computed for each
subject’s time-courses and separately for each smoothing
condition on full range of the frequency bands, i.e., [0 –
0.25] Hz. To determine which spatial map voxels, FNC
correlations or spectral bins were influenced by spatial
smoothing kernel size, pairwise paired t-test was performed
at the false discovery rate [FDR]-corrected threshold of
0.01. Significant effects were visualized by plotting the
log of p-value with the inverse sign of the associated t-
statistic, i.e., �sign(t)log10(p) to provide better information
on directionally and statistical strength [4].

Fig. 2. Significant effects of smoothing on spatial maps. Results of paired
t-test are shown for A S4 – S8, B S8 – S12, and C S4 – S12, where S
denotes smoothing kernel sizes of 4, 8, or 12 mm. FDR-corrected p < 0.01.

III. RESULTS
From 20-IC decomposition, ten ICs were identified as

ICNs (Fig. 1). They included a visual network (VN; IC02),
two sensorimotor networks (SMN; ICs 10 and 15), two
default mode networks (DMN; ICs 30 and 34), self-
referential network (SRN, IC14), salience network (SN,
IC05), two frontoparietal central executive networks (CENs;
ICs 3 and 4), and dorsal attention network (DAN, IC18)
[10]–[14]. Number of voxels in each FWE-thresholded ICN
spatial maps, MNI (x, y, z) location of the peak voxel
and associated t-score are provided for each smoothing
condition in Table 1. Note that the peak location and t-values
are not identical between different smoothing condition.
Results summarizing the effects of smoothing kernel FWHM
size on spatial map intensities are shown in Fig. 2 (FDR-
corrected p < 0.01). Due to the importance of DMN and SN
especially in resting state studies (such as in interoception
studies [15]–[17]), significant differences in intensities of
DMN and SN spatial maps for different pairwise paired t-
test (S4 – S8, S8 – S12, S4 – S12, where S stands for
smoothing kernel FWHM sizes of 4, 8, or 12 mm) are shown
separately in Fig. 3. FNC correlations averaged over subjects
for each smoothing condition, and significant differences in
FNC between conditions are shown in Figs. 4A and 4B,
respectively. The effects of smoothing on ICN power spectra
are displayed in Fig. 5 (FDR-corrected p < 0.01).

Fig. 3. Significant effects of smoothing on DMN and SN spatial maps.
Results of paired t-test are shown for A S4 – S8, B S8 – S12, and C S4 –
S12, where S = FWHM 4, 8, or 12 mm. FDR-corrected p < 0.01.
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Fig. 4. A FNC correlation matrices for smoothing kernel FWHM of 4, 8, or 12 mm; B Significant differences in FNC correlations for different pairwise
paired t-test, where S stands for smoothing kernel FWHM. For each paired t-test, results are shown for all ICNs (top), and as connectogram (bottom).
FDR-corrected p < 0.01.

Fig. 5. Significant effects of smoothing kernel sizes on power spectra. A S4 – S8, B S8 – S12, and C S4 – S12, where S is smoothing kernel FWHM of
4, 8, or 12 mm. T-maps of significant effects are shown as composite t-maps. Beta-values are averaged over significant clusters. FDR-corrected p < 0.01.

3223



IV. DISCUSSION

Similar to other studies that used low-level ICA model
order to extract ICNs from fMRI data, we could successfully
identify well-known ICNs with sufficient spatial segregation
of functional regions in our data. From 20 components,
we identified 10 ICNs that are highly reminiscent of those
described in previous studies [10]–[16]. As we showed in
previous study of low vs. high ICA model order [18], not
all ICN types appeared in this low-order decomposition. For
example, ventral attention network or subcortical networks
were not present here.

After performing pairwise paired t-test on data that were
preprocessed using three different spatial smoothing kernel
sizes, we found mostly similar effects of smoothing on ICN
features as we reported for 75-IC model order. There was
a decrease in spatial maps of all ICNs with a reduction in
the smoothing kernel size. Number of voxels in each FWE-
thresholded ICN spatial maps, location of the peak voxel
and associated t-score were also changed with the smoothing
kernel sizes. There was a reduction in volume of networks
and t-score with smaller smoothing kernel sizes. In addition,
similar to high-level ICA, power spectra analysis of low-
level ICA showed generally increased high-frequency power
(0.15 – 0.25 Hz) but decreased low-frequency power (0.01 –
0.10 Hz) with a decrease in the smoothing kernel size.

FNC of low model order ICA with FDR-corrected p-
value of 0.01 (Fig. 4A), also showed general reduction
in the between-network connectivity (FNC correlations) in
particular between the dorsal and ventral DMN (S4 – S8,
and S4 – S12, with S denoting smoothing kernel FWHM),
and to a lesser degree between the VN and SMN (S8 –
S12, and S4 – S12), and between the CEN and DAN with
smaller smoothing kernel sizes. There were few exceptions.
The FNC involving the CEN and VN and sometimes SMN
showed strengthening with the reduction of smoothing kernel
size. In our FNC findings of high order ICA, we have
shown that smaller smoothing kernel influenced the between-
network connectivity strength by generally decreasing the
FNC correlations. This effect was shared among most ICNs.
However, upon revisiting the FNC results and comparing it
to low-level model ICA finding here, we spot similar trend
in FNC increase involving CEN and other cognitive/attention
networks with reduction in smoothing kernel size. But after
averaging between networks at high-level ICA, this effect
did not survive the stringent FDR-corrected p-value of 0.01.

V. CONCLUSION

ICA-based network analysis is gaining momentum in
fMRI studies. The findings that we reported in this and other
accompanying papers provide a preliminary observation on
how smoothing kernel size influence different spatiotemporal
features of functional brain networks at low and high-
model order ICA of resting state fMRI data. For further
understanding of these effects, more research with larger
data sample is needed to study how preprocessing variances
associated with smoothing may influence ICA outcomes.
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