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ABSTRACT

Pseudo-label-based unsupervised domain adaptation (UDA)
has increasingly gained interest in medical image analysis,
aiming to solve the problem of performance degradation of
deep neural networks when dealing with unseen data. Al-
though it has achieved great success, it still faced two sig-
nificant challenges: improving pseudo labels’ precision and
mitigating the effects caused by noisy pseudo labels. To solve
these problems, we propose a novel UDA framework based
on label distribution learning, where the problem is formulat-
ed as noise label correcting and can be solved by converting
a fixed categorical value (pseudo labels on target data) to a
distribution and iteratively update both network parameters
and label distribution to correct noisy pseudo labels, and then
these labels are used to re-train the model. We have extensive-
ly evaluated our framework with vulnerable plaques detection
between two IVOCT datasets. Experimental results show that
our UDA framework is effective in improving the detection
performance of unlabeled target images.

Index Terms— Unsupervised domain adaption, pseudo
label, label distribution, plaque detection, IVOCT.

1. INTRODUCTION

Vulnerable plaques are the leading cause of acute coronary
syndrome, which can be successfully detected on IVOCT im-
ages by the deep learning-based method [1]. However, the
trained deep model often meets performance degradation due
to the following reasons: 1) detecting images obtained from
different imaging equipment manufacturers; 2) detecting im-
ages obtained from different hospitals. However, these im-
ages have the same visual appearance and are not problem-
atic for doctors to diagnose. This situation is known as the
domain shift, which is one of the critical factors that pre-
vent the transfer of research results into real-world applica-
tions. One straightforward idea is to annotate more training
data of the target environments and then re-train the neural
network. However, annotating data for each new domain is
time-consuming and expensive or sometimes even infeasible,
especially in the medical field that requires expert knowledge.

This work was supported by National Key R&D Program of China Grant
2017YFA0700800.

To address the challenge, the researchers resort to unsuper-
vised domain adaption (UDA) [2], for which no labels in the
target domain are required.

The main challenge of UDA is the discrepancy of data
distribution between the source domain and target domain.
Current methods involve two lines of methods, domain-
translation-based UDA and pseudo-label-based UDA. Do-
main translation-based UDA methods adopt [3] the image-to-
image translation model to translate source-domain images
to have the same style as the target-domain images while
retaining their original contents. Then the model is adapted
to the target domain by training with such domain-translated
images and their ground-truth labels. However, this line of
work is sub-optimal. Because the image-to-image translation
model, Generative Adversarial Networks (GAN)[4], is only
independently trained and does not measure the similarities
between target-domain images correctly. Pseudo-label-based
UDA [5] methods focus on learning target-domain features
with generated pseudo labels, which are implemented by a
two-stage training scheme: (1) supervised pre-training on
the source domain with ground-truth labels, and (2) unsuper-
vised fine-tuning on the target domain with pseudo labels.
However, pseudo labels usually suffer from the noise caused
by the model trained on the different data distribution. The
noisy label could damage the subsequent learning. There are
two methods to solve this problem: improving the precision
of pseudo labels and mitigating the effects caused by noisy
pseudo labels. Some existing works have proposed to set
the threshold to neglect the low-confidence pseudo labels to
improve the precision of pseudo labels [6]. Although pseudo
labels’ precision is improved to a certain degree, it still exists
noise in the pseudo labels.

We propose an end-to-end method for UDA via label dis-
tribution learning to address the mentioned challenges, which
could transfer a fixed categorical value to distribution and cor-
rect noisy pseudo labels by updating the label distributions
to obtain a robust training model. Without introducing ex-
tra modules, we transfer the fixed noisy labels to a distribu-
tion. Then, we iteratively update the network parameters and
the label distribution. Therefore, the proposed method could
effectively exploit the target-domain information offered by
corrected pseudo labels and take advantage of the unlabeled
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target-domain data, which is critical in deploying the trained
model in clinical practice. We perform experiments on the
2017 IVOCT dataset and Harbin-oct dataset to investigate the
UDA of vulnerable plaque classification. It obtains compara-
ble performance with the supervised learning methods on the
target domain.
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Fig. 1. The UDA framework. We first train the source-domain
model with supervised ground-truth label(YS). Then, noisy
pseudo labels (ŷt) of target domain dataset can be obtained
by prediction results of source-domain model. Next, we use
label distribution (ydt ) to replace noisy pseudo labels (ŷt) by
softmax function, and the label distribution are updated in ev-
ery iteration using three loss function. Last, we use correct
pseudo labels to fine-tune the model. The red arrow indicates
forward propagation, and the blue arrow indicates backward
propagation.

2. METHOD

In this section, we first provide the definition and representa-
tion of the problem. Then, we revisit the conventional domain
adaptive method based on the pseudo label, and the label dis-
tribution learning is proposed to mitigate the effects caused
by noisy pseudo labels. Finally, a training strategy is given to
optimize the whole framework.
2.1. Problem Definition

Given the labeled dataset Xs = {xsi}Mi=1 from the source
domain and the unlabeled dataset Xt = {xtj}Nj=1 from the
target domain where M and N denote the number of labeled
source data and the unlabeled target data. The unsupervised
classification domain adaption intends to learn a model F
from the source domain, then estimate the model parameter
θt to minimize the prediction bias on the target-domain in-
puts. During training, the label Ys = {ysi}Mi=1 of source do-
main dataset is provided while the target-domain label Yt =
{ytj}Nj=1 remains unknown. We minimize the cross-entropy
loss in Equation 1, then the discrepancy between predicted
results and the ground-truth probability on the source-domain

dataset is minimized.

Bias(yt) = E[−ytj logF (xtj |θt)] (1)

where ytj is the ground-truth label, and F (xtj |θt) is the pre-
dicted probability of xtj . During testing, we utilize the trained
model F to predict the label of test examples.

2.2. Pseudo Label Learning

Pseudo label learning is to leverage the pseudo label to learn
feature representation from the unlabeled data, which tackled
unsupervised domain adaption following a two-stage train-
ing scheme: (1) supervised pre-training on the source do-
main, and (2) unsupervised fine-tuning on the target domain.
Pseudo labels could be obtained via the model of stage one:
ŷjt = argmaxF (xjt |θs) where θs is the model parameters
learned from the source-domain training data. Then the pre-
diction bias is minimized on stage two with Equation 1 to
obtain the target model. Existing methods consider pseudo
labels ŷt as true labels and train the model parameters θt to
minimize the bias between the prediction and pseudo labels.
However, because of different data distribution between Xs

and Xt, the obtained pseudo labels ŷt are not accurate. More-
over, noisy pseudo labels can lead to serious overfitting and
dramatically reduce the trained network’s accuracy.

2.3. Label distribution learning

Inspired [7], we utilize label distribution learning to address
the label noise. We translate noisy pseudo labels to label dis-
tribution, and this probabilistic setting allows ample flexibil-
ity for noise correction. The pseudo label ŷt can be trans-
lated to ydt and ydtj ∈ S = {y : y ∈ [0, 1]c, 1T y = 1} for
every image xtj , and ydtj is our estimate of the underlying
noise-free label for xjt , which is initialized based on the noisy
pseudo label ŷtj . Then, it is continuously updated through
back-propagation.

The label distribution ydtj models the unknown noise-free
label for xtj . Hence, we need to estimate these distributions
in our learning process. We let ydtj be part of the updated
parameters during the back-propagation process. We not only
update the network parameters θt but also update ydt in every
iteration. Therefore, we optimize both network parameters
and label distribution as follows:

min
θt,ydt

L(θt, y
d
t |Xt) (2)

The overall architecture is shown in Fig.1. After training, ydt
will be a good estimate of the underlying unknown noise-free
label (corrected label).

As mentioned above, we use noisy pseudo labels ŷt to
initialize label distribution ydt . However, the original noisy
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label ŷt does not directly affect the model (F (xtj |θt)) learn-
ing, and we use it to indirectly initialize our label distribution
ydt , which can be denoted as follows:

ydt = softmax(Kŷt) (3)

where K is a large constant (K=2 in our experiments).
We minimize the bias between our label distribution ydt

and the network prediction f(xt; θ) to guides how the net-
work parameters should be updated. As same as the previous
label distribution learning studies [7], we also use KL-loss to
calculate the distance between these two distributions. Hence,
Equation 2 can be reformulated as:

Lc(f(xt; θt), y
d
t ) =

1

N

N∑
j=1

KL(f(xtj ; θt)||ydtj) (4)

We should notice that although the pseudo labels contain
noise, they also have lots of correct labels. Therefore, we
should not let the estimate label distribution ydt totally differ-
ent from those noisy labels ŷt. Then, we introduce a compat-
ibility loss Lo(ŷt, ydt ) to ensure this requirement, which can
be denoted as:

Lo(ŷt, y
d
t ) = −

1

N

N∑
j=1

ŷtj logy
d
tj (5)

which is a classic cross-entropy loss between label distribu-
tion and noisy label.

Because of label distribution ydt as supervision signal, the
model f(xt; θt) tend to approach ydt fairly quickly. We add
a loss term following the previous work, named the entropy
loss, to avoid this problem. The entropy loss can force the
network to peak at only one category rather than flat because
the one-hot distribution has the smallest possible entropy val-
ue. This property is advantageous for classification problems.
The entropy loss is defined as

Le(f(xt; θt)) = −
1

N

N∑
j=1

f(xtj ; θt)logf(xtj ; θt) (6)

Hence, the overall loss function is

L = Lc(f(xt; θt), y
d
t )+αLo(ŷ

d
t , y

d
t )+βLe(f(xt; θt)), (7)

in which α and β are two hyperparameters.

2.4. Training and Testing

During training, we first train the model using the provided
ground-truth label and the cross-entropy loss on the source-
domain dataset. Secondly, we use the trained source-model
to predict the target-domain dataset and get pseudo labels.
Thirdly, we utilize pseudo labels to initialize label distribu-
tion ydt , and then the ydt is used as true labels to update both

network parameters and label distributions. According to the
previous study, updating ŷdt requires a much larger learning
rate than other parameters. Hence, we use a single hyperpa-
rameter λ to update ydt , as

ydt = softmax(Kŷt)← Kŷt − λ
∂L

∂Kŷt
(8)

At the end of this step, the corrected label distribution for
each image is obtained. Finally, we use only the KL-loss(i.e.,
α = β = 0) to fine-tune the network using the learned label
distributions.

During testing, we use the fully trained network to prefor-
m prediction for future test examples.

3. EXPERIMENTS

We evaluate our proposed UDA method on two real-world
datasets: IVOCT2017 and HarbinOCT. All experiments were
implemented using the PyTorch framework.

3.1. Datasets and Metrics

IVOCT-2017 [8] dataset was provided by the 2017 Chinese
conference on computer vision (CCCV)-IVOCT based vul-
nerable plaque detection challenge. It contained 3000 im-
ages and was divided into two parts: training data (2000 im-
ages, including 1000 positives and 1000 negatives), testing
data (300 images, including 198 positives and 102 negatives).
We also build a new dataset (HarbinOCT) based on clinical
IVOCT images acquired with a St. Jude Ilumien OPTIS. The
HarbinOCT consisted of 3106 images and was split off an in-
dependent test set of 309 images (153 positives and 156 neg-
atives). In this paper, we train the model on one dataset and
adapt it to another dataset. The ground-truth label of the target
dataset is unknown.

The evaluation metrics of our UDA framework is based
on three criteria, including precision (P), recall (R), and har-
monic mean (F-score), which can be defined as:

P = nTP
nTP+nFP

R = nTP
nTP+nFN

F − score = 2P×R
P+R

(9)

where nTP , nFP , and nFN represent the number of true
positives, false positives, and false negatives, respectively.

3.2. Implementation and Results

We use ResNet-18 as the backbone network for feature repre-
sentation. And the initial learning rate is 0.01, α = 0.1, β =
0.4, and λ = 100. Denoiseing, flattening and horizontal ran-
dom flip were performed as data preprocessing and augmen-
tation. We used SGD with 0.9 momentum, a weight decay of
10−4, and a batch size of 20. We first trained the source mod-
el with a learning rate of 0.01 and divided it by 10 after every
8 epochs. Then, we fine-tuned the trained source model with
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Table 1. Evaluate the performance of our UDA framework
for VPS classification

IVOCT to HarbinOCT
Method P R F-score

Supervised training 0.8888 0.9934 0.9382
W/o adaption 0.6371 0.9869 0.7743

Pseudo-label [5] 0.8445 0.8169 0.8305
DANN [9] 0.8679 0.9019 0.8846

ADDA [10] 0.7219 0.9673 0.8268
Our UDA 0.875 0.9150 0.8945

Table 2. Evaluate the performance of our UDA framework
for VPS classification

HarbinOCT to IVOCT
Method P R F-score

Supervised training 0.9361 0.8888 0.9119
W/o adaption 0.72 0.97 0.83

Pseudo-label [5] 0.7471 0.9494 0.8496
DANN [9] 0.7758 0.9090 0.8372

ADDA [10] 0.8729 0.7979 0.8337
Our UDA 0.8148 0.8888 0.8502

pseudo labels of the target dataset. The epochs numbers for
the three stages were 15, 20, and 60. In the last step, we used
the learning rate of 0.05 and divided it by 10 after 33 and 46
epochs.

To observe the effect of domain shift on classification
performance, we first obtain the ’W/o adaption’ lower bound
by directly applying the model learned in the source do-
main to test target images without using any domain adaption
method. We also provide the performance upper bound of
supervised learning with target domain labels to measure the
performance gap. For a consistent comparison, ResNet-18 is
adopted for training lower and upper bounds. Furthermore,
we compare our method with three UDA methods including
Pseduo-label [5], DANN [9] and ADDA [10]. Tabel 1 and
Tabel 2 reports that the model trained on the source dataset
only obtained the F-score of 0.7743 and 0.83 when being
tested on the target dataset directly. The significant perfor-
mance gap to the supervised training upper bound is 28 and
8 percentage points, demonstrating the server domain gap
between datasets from different sources and leading to a large
degradation of performance. Remarkably, our UDA method
improves the classification performance to 0.8945 and 0.8502
and overpasses three UDA methods. These quantitative re-
sults validate our method’s effectiveness in addressing noisy
pseudo labels and the severe domain shift.

4. CONCLUSION

In this paper, we have presented a novel pseudo-label-based
UDA framework for VPS detection. We transferred the
fixed pseudo labels in label distribution and iteratively up-
date both network parameters and label distribution to gain
robust target models. Experimental results demonstrate our
UDA framework’s effectiveness in improving VPS detection
performance in the unlabeled target domain, which lays the

foundation of the deployment of decision support systems in
clinical practice. Future work focuses on solving the stability
of the algorithm and simplifying the algorithm.
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