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Abstract—Electrocardiogram (ECG) is mainly used by 

medical domain to diagnose arrhythmia. With the development 

of deep learning algorithms in the ECG classification field, 

related algorithms have achieved very high accuracy. However, 

the training of deep learning algorithms always requires large 

amounts of samples, while the labeled samples are often lacked 

in the field of medical signals. Therefore, the performance of 

deep learning algorithms will be greatly restricted. To overcome 

the sample scarcity problem, we propose a few-shot ECG 

classification approach based on the Siamese network. This 

network architecture first uses two one-dimensional 

convolutional neural network (CNN) that share weights to 

extract feature vectors of the paired input signals. Then, L1-

distance between the two feature vectors is calculated and 

inputted into the fully connected layer with an activation 

function sigmoid to determine whether the input pairs belong to 

same category. We validated our method on the MIT-BIH 

arrhythmia database. By experiments, our method performs 

better than existing networks under the circumstance of 

extremely few amounts of data. 

 
Clinical Relevance—The proposed algorithm can be used to 

classify arrhythmia types with a small amount of data. 

I. INTRODUCTION 

Arrhythmia is a very common cardiovascular disease. 
Though most of arrhythmias are innocuous to human body, 
some kinds can lead to further impact such as rapid atrial 
fibrillation and persistent ventricular [1] tachycardia. These 
can threaten people’s life health if not diagnosed timely. The 
most commonly used clinical diagnosis method for arrhythmia 
is electrocardiogram (ECG), because it is non-invasive for 
human body and cheap in price.[2] ECG can record electric 
potential change of heart to show its health condition. 

It is both labor-intensive and time-consuming for experts 
to diagnose ECG manually, since inter-patient variations are 
significantly varying with different temporal and physical 
conditions [3]. Therefore, efficient automatic arrhythmia 
diagnosis is required. In recent few years, deep learning meet 
a rapid development in ECG diagnosis. Compared with 
traditional method, it has great advantage in extracting signal 
features automatically without human design. 

Among deep learning algorithm, CNN is widely applied in 
ECG diagnosis and achieved good performance [4]. Yildirim 
et al. [5] used a 16-layer CNN model and got 95.2% accuracy 
on MIT-BIH arrhythmia dataset. A Deform-CNN architecture 
for ECG diagnosis was supposed by Lang et al.[6], the overall 
diagnostic accuracy rate of which in CPSC-2018 database can 
reach 86.3%. Gao et al. [7, 8] constructed a network that focus 
sematic information by combining CNN with temporal 
attention module, and get 82.32% accuracy in The PhysioNet 
Computing in Cardiology Challenge 2017. Gao et al.[9] also 
proposed a new exponential nonlinear loss (EN-Loss) base on 
CNN to solve the atrial fibrillation classification problem. 
Considering that the convolutional neural network only pays 
attention to the spatial characteristics of the signal and ignores 
the sequential features. A composite neural network structure 
composed of CNN and long-term short-term memory network 
(LSTM) [10] is developed. Shu et al. [11] combined LSTM 
and CNN to consider both the sequential and spatial features 
of the signal to improve the classification performance of ECG 
signals. By constructing a hybrid network that can handle 
variable-length ECG signals, an accuracy of 98.10% is 
obtained. Qiao et al. [12] get an accuracy of 99.32% on the 
MIT-BIH Arrhythmia database by using a model of CNN and 
Bidirectional long-short time memory network (BLSTM). 

Although recent neural network models have achieved 
excellent results in ECG diagnosis, they are quite dependent 
on large amount of training data. However, large amounts of 
labeled data are often lacked. Therefore, we adopt the view 
that a diagnostic classification method for arrhythmia based on 
extremely few data should be established. 

Along development of deep learning, aiming at solving the 
problem of data scarcity, deep neural networks based on small 
amount of training sets have made important progress [13]. In 
the field of computer vision, Qiao et al. [14] proposed an image 
recognition method to complete the classification task by 
predicting activation parameters in the matrix space. Zhang et 
al. [15] proposed Meta-GAN that can be semi-supervised in 
consideration of sample level and task level. Although few 
shot learning has extensive research computer vision field, the 
exploration in the field of ECG diagnosis is still not enough. 
Thus, inspirated by Siamese neural network proposed by Koch 
et al [16]. We propose a one-dimensional Siamese few-shot 
learning approach for ECG diagnosis, which can realize the 
few-shot task of ECG classification through a feature 
comparison method. The performance of our method is 
verified on the MIT-BIH Arrhythmia Database and accuracies 
of 82.36%, 84.98%, 89.16%, 91.73% and 92.42% are gained 
respectively for 1 shot, 5 shot, 10 shot, 30 shot and 50 shot 
cases. The performance is significantly improved compared to 
existing deep learning methods.
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Fig.1. Few-shot-learning model for ECG classification.
1x and

2

nx denote the paired input signals, f (x1) and 2( )nf x denote the feature vectors, 
1 2( , )nP x x denote the 

probabilities that the paired input signals are of the same category, n=1,2,3,4.

II. METHODOLOGY 

In this section, the principle and implementation steps of 
our model used for ECG signal diagnosis will be described in 
details. 

A. Siamese Few-shot Learning Algorithm 

In the application scenario of few shot learning, we have a 
small labeled sample set D with a size of 4N, that is, there are 
N training samples for each 4 classification categories, as 
shown in Eq. (1). Each training sample X has an independent 
label Y. 

 {( , ),( , ),......,( , )}, 0,1,2,3
1 1 2 2
c c c c c cD X Y X Y X Y c

N N
   (1)                 

In the training process of our model, the paired signals will 

be extracted from D and used as the training set input 1 2( , )i jX X

. Among all signal pairs, half of the pairs are composed of 
signals of the same type, that is, i j . The other half of the 

signal pairs are composed of different types of signals, that is, 

i j . The output of the model is the probability 1 2( , )i jP X X of 

which the two signals in the input signal pair are of the same 
category. 

B. The Proposed Few-shot ECG Diagnosis Method 

The framework used for arrhythmia diagnosis contains 
three main steps, data preparation, model training and model 
testing. In the data preparation stage, signal pairs will be input 
into two 4-layer one-dimensional CNNs with same model 
structure for feature extraction. The two CNNs have exactly 
the same parameters and share weights. Outputs of the two 
CNNs is two feature vectors of the same length. The structure 
of our model is shown in Fig. 1 and the details of the CNNs 
are shown in TABLE I. In the model training stage, we 
calculate the distance of all the feature vectors generated by 
the pairs composed of the training set signals to obtain the 
probability matrix. By using the binary cross-entropy loss 
function, the parameters update. In the model testing stage, we 
will use the parameters saved during model training to classify 
the test signals and get the accuracy. A judgement method 
named K nearest similarity judgement will be used in the 
model testing, and the details of which will be explained 
below. 

1) The Input of ECG Diagnosis Method 

Before running the algorithm, we preprocessed the data in 
the dataset. The original ECG signals are segmented into beats 
and then the heartbeats are down-sampling to a certain length 
that contain 250 sample points. In addition, Normalization 
processing will be used for each data as shown in Eq. (2), 
where x and 2 denote the mean value and the variance of the 

sample attribute.  

 2

x x
x




  (2) 

Every input of our framework is in pairs because this can 
generate more different pairs to train the model through 
permutation and combination of data. So that even though the 
amount of training data is small, it is not easy to overfit. For 
example, if we assume that the training set has C categories, 
and each category has N samples, the number of different pairs 
that may be generated is shown in Eq. (3). Considering case 
that C=4 and N=5, 190 different pairs are generated compared 
to the original 20 signals. 

 
( )!

2 2!( 2)!
pairs

C N C N
N

C N

  
  

  
 (3) 

2) Distance Matrix 

Each element in the distance matrix is actually the L1 
distance (also called Manhattan distance) of the paired feature 
vectors as expressed in Eq. (4). Among the equation, i 
represents the index of minibatch, and f represents the feature 
vectors gained as the outputs of the two convolutional neural 
networks.  

 
2

1 2 1 2( , ) || ( ) ( ) ||i i i i

fd x x f x f x   (4) 

TABLE I. Details of the layers of our convolutional neural network. The 
Layer details contain the size and dimensions of the convolution kernels.  

No. Layers Layer details Padding Output shape 

1 Conv1 1×10,64 valid 1×241×64 

2 MaxPool1 1×2 same 1×121×64 

3 Conv2 1×7,128 valid 1×115×128 

4 MaxPool2 1×2 same 1×58×128 

5 Conv3 1×4,128 valid 1×55×128 

6 MaxPool3 1×2 same 1×28×128 

7 Conv4 1×4,256 valid 1×25×256 

8 MaxPool4 1×2 same 1×13×256 
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9 Dense 2048  1×2048 

3) The Output of ECG Diagnosis Method  

As we have described in the section A, the output of our 
network is the probability that the two signals in the input 
signal pair are of the same category. Through a fully connected 
layer with an activation function of sigmoid, the probability is 
obtained by the distance matrix shown in Eq. (4). The 
calculation of probability is shown in Eq. (5). Among them, i 
represents the index of minibatch, sigm represents the sigmoid 
activation function, which is shown in Eq. (6) and FC 
represents the fully connected layer. 

 
2

1 2 1 2( , ) ( ( ( , )))i i i i

fP x x sigm FC d x x  (5) 

 ( ) 1/ (1 )xS x e   (6) 

C.  K-Nearest Similarity Judgement Testing 

In order to improve the robustness and reduce the 
contingency, we introduce the K nearest similarity judgment 
to both testing and validation. Here we take testing process as 
example. In the testing process of Siamese few shot learning, 
we have a test set T and a support set S whose involved signals 
are all derived from the labelled training set. The value of K 
depends on N, which is the number of samples of a single 
category in the training set. In our test process, if N≤10, K=N, 
if N>10, K=10. In the N-shot learning test process, we 
randomly select a signal from the test set T, and randomly 
select four labeled signals of different types from the training 
set to form the support set S and this process is repeated K 
times (S1, ..., SK). Then the four signals in each support sets and 
the test signal are formed into pairs respectively and then 
inputted into the network to obtain similar probabilities. After 
that, if K=1, the category of the test sample is predicted as the 
largest probable type of signals. In general cases, the type of 
the test signal is predicted by Eq. (7). 

 1

1

( , ( ,..., )) arg max( ( )), ,
K

K sk k
s

sk

k

C x P xS S x x S


   (7) 

III. EXPERIMENT AND RESULTS 

In this section, we will provide comparative experiments 
and results to prove the effectiveness and superiority of our 
proposed method.  

A.  Data Description 

The experiments are all implemented on the MIT-BIH 
Arrhythmia Database. The records in this Database are 
obtained from 47 subjects studied by the BIH Arrhythmia 
Laboratory from 1975 to 1979. Each record is sampled at 
360Hz in the range of 10 mV. All the recorded signals are 
annotated by multiple cardiologists. We divide the signals into 
five categories according to the Association for the 
Advancement of medical Instrumentation (AAMI), which are 
F (Fusion of ventricular and normal beat), N (Normal beat), S 
(Premature or ectopic supraventricular beat), V (Premature 
ventricular contraction) and Q (unclassified beat). The four 
categories considered in our experiments are F, N, S and V, 
because category Q is ignored since it accounted for very little 
proportion in the database. The details of the database are 
shown in TABLE II. 

B. Experimental Setup 

 In order to verify our proposed method, we compared it 
with VGG12 [17], LSTM, CNN-LSTM and the CNN baseline 
described in TABLE I. For the experiment of VGG12, in 
order to enable the network to process one-dimensional ECG 
signals, we transform the original network architecture so that 
it can process one-dimensional data. In the LSTM 
experiment, we used two layers of LSTM with an output 
dimension of 256. And in the experiment of CNN-LSTM, two 
layers of LSTM with output dimension of 256 is added after 
the max pooling in step No.8 of the CNN structure shown in 
TABLE I. 

Considering that the number of training sets for few shot 
learning is too small, the composition of the training set has a 
greater impact on the experimental results. Our experimental 
results are the average of multiple independent experiments, 
and the training set of each independent experiment is 
different and random. In the experimental process of our 
Siamese few-shot learning method, the average value of 
results is obtained by calculating 10 independent testing 
accuracies. In all other comparative experiments, the final 
accuracy is the mean of 10 independent experiment results. In 
all experiments, we considered five cases, 1 shot, 5 shot, 10 
shot, 30 shot and 50 shot. As for N shot case, the number of 
samples of each category in the training set is N. Therefore, 
the size of training set of the five cases we considered above 
is 4, 20, 40, 120, and 200 respectively. The size of the test sets 
used in all experiments are all 400. 

Our proposed architecture is implemented on Keras using 
an Nvidia 2070 GPU. To train the Siamese few-shot learning 
model, Adam optimizer with a learning rate of 0.00006 is used 
and the batch size is selected to be 32. The loss function used 
for network training is binary cross-entropy and the number of 
training epoch is set to 2500 in order to make sure the loss 
value to be stable. 

TABLE II. Quantities of each category in the MIT-BIH Arrhythmia Database. 

Category F N S V Total 

Quantity 802 89841 2927 7008 100578 

C. Effectiveness of Siamese Few-Shot Learning Algorithm 

Our proposed method, one-dimensional Siamese few-shot 
learning approach, is denoted as 1D-SIAMESE in the 
following part. And the CNN architecture used in 1D-
SIAMESE for features extraction is denoted as CNN-BASE. 
It is worth mentioning that the training of the CNN-BASE 
network and that of 1D-SIAMESE are exactly the same in 
terms of the selection of activation function and convolution 
configurations such as the number of channels, kernel size 
and length of stride. The experimental results of 1D-
SIAMESE and CNN-BASE in the case of 1 shot, 5 shot, 10 
shot, 30 shot and 50 shot are shown in TABLE III.  

It can be seen from the results that, due to the function of 
Siamese network architecture, the performance of 1D-
SIAMESE is much better than that of CNN-BASE in all cases, 
leading by 19.13%, 14.78%, 17.36%, 11.20%, and 7.17% 
respectively. Especially in 1 shot case, the accuracy of 1D-
SIAMESE is 82.36% while CNN-BASE only gains 63.23%. 
This illustrates that the paired input method of Siamese 
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architecture can indeed enrich the effective features of the 
input samples, so that the network can obtain more 
classification judgments than normal networks when there are 
few training samples, so as to obtain better classification 
performances. In addition, as the training set becomes larger, 
the accuracies of 1D-SIAMESE and CNN-BASE both 
gradually increases. This is consistent with the law of deep 
learning. 

TABLE III. The results of CNN-BASE and 1D-SIAMESE within 5 cases. 

Accuracy (%) 1 shot 5 shot 10 shot 30 shot 50 shot     

CNN-BASE    63.23 70.18 71.80 80.53 85.25 

1D-SIAMESE 82.36 84.98 89.16 91.73 92.42 

D. Comparison with Existing Methods 

In order to prove the superiority of Siamese few shot 
learning algorithm, we will compare the experimental results 
of VGG 12, LSTM, CNN-LSTM and 1D-SIAMESE in the 
case of 1 shot, 5 shot, 10 shot, 30 shot and 50 shot. The results 
are shown in TABLE IV and Fig. 2.  

The results show that in all cases, the accuracy of 1D-
SIAMESE is the best among all methods, which are 82.36%, 
84.98%, 89.16%, 91.73% and 92.42% respectively. For 
convenience, we only take 1 shot and 30 shot as examples. 
Under the extreme conditions of 1 shot, 1D-SIAMESE got an 
accuracy of 82.36%, while VGG 12, LSTM and CNN- LSTM 
gains accuracies of only 52.90%, 62.05% and 67.35%, 
leading by 29.46%, 20.31% and 15.01% respectively. In the 
case of 30 shots, the accuracy of our method is 91.73%, which 
means that raises of 17.25%, 11.9% and 17.3% happen since 
the accuracies of VGG 12, LSTM and CNN-LSTM are only 
74.48%, 79.83% and 74.43% respectively. It is worth 
mentioning that, with the raise of data in the training set, our 
proposed method still has a good performance. According to 
the experimental results, our method still gains the highest 
accuracy in the case of 50 shot. 

TABLE IV. The results of VGG 12, LSTM, CNN-LSTM and 1D-SIAMESE 
within 5 cases. 

Accuracy (%) 1 shot 5 shot 10 shot 30 shot 50 shot     

VGG 12 52.90 70.40 70.78 74.48 79.08 

LSTM 62.05 69.15 74.53 79.83 80.40 

CNN-LSTM 67.35 73.95 74.35 74.43 78.56 

1D-SIAMESE 82.36 84.98 89.16 91.73 92.42 
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Fig.2. Results of VGG 12, LSTM, CNN-LSTM and 1D-SIAMESE within 5 
cases. 

IV. CONCLUSION 

In this paper, we propose a few shot learning method 
based on the Siamese network in the ECG classification field 
to solve the problem of sample scarcity. The Siamese network 
reduces the requirements for the network ability of feature 
extraction through the combination of feature extraction and 
comparison methods. Also, we use paired inputs instead of 
normal single input. By constructing image pairs, the number 
of training samples is increased. Thus, good classification 
results can be obtained even when the training set is small. In 
addition, the comparative experiments implemented on the 
MIT-BIH Arrhythmia Database show that when the training 
set is small, the one-dimensional Siamese network can 
perform better than CNN-BASE, VGG12, LSTM and CNN-
LSTM. Besides, as the amount of data in the training set 
increases, the one-dimensional Siamese network still has the 
best performance, as shown by 50 shot case. These illustrate 
the effectiveness and superiority of our method. 
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