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Abstract— Gleason grade stratification is the main histolo-
gical standard to determine the severity and progression of
prostate cancer. Nonetheless, there is a high variability on
disease diagnosis among expert pathologists (kappa lower than
0.44). End-to-end deep representations have recently deal with
the automatic classification of Gleason grades, where each
grade is limited to namely code high-visual-variability sharing
patterns among classes. Such limitation on models may be
attributed to the relatively few labels to train the representation,
as well as, to the natural imbalanced sets, available in clinical
scenarios. To overcome such limitation, this work introduces
a new embedding representation that learns intra and inter-
Gleason relationships from more challenging class samples
(grades tree and fourth). The proposed strategy implements
a triplet loss scheme building a hidden embedding space that
correctly differentiates close Gleason levels. The proposed ap-
proach shows promising results achieving an average accuracy
of 74% to differentiate between degrees three and four. For
classification of all degrees, the proposed approach achieves an
average accuracy of 62%.

Clinical relevance— The proposed approach properly model
intra and inter variability of visual regions correlated with
Gleason score. Such fact may contribute to support cancer
aggressiveness stratification.

I. INTRODUCTION

Prostate cancer is the second most common cancer, report-
ing around 1,276,000 new cases each year and more than
358,989 deaths [1]. The patients survival depends entirely
on early and correct disease diagnosis to select the best
treatment [2]. However, this procedure is tedious and depends
entirely on experts, introducing a high variation in diagnosis.
The Gleason grading is the main system for quantifying and
characterizing cancer from histological images, analyzing,
among others, glandular structures, color and general spatial
arrangement [3], [4]. In general, the Gleason grading system
is divided into two scales: from (1-5) to characterize local
regions, and from (6-10) to report a general sample analysis.
In the first scale (1-5), the primary levels present well-formed
glands, while the last stages do not present glands, instead,
there are solid nets and necrosis as show in Figure 1. The
high scale (6-10) is reported as the sum of the two most
predominant patterns present in the sample. For example, a
diagnosis of grading 7 is the result of finding grades 3 and
4 in the sample (3 + 4 or 4 + 3) [5].

Despite the effectiveness of the Gleason system, high
diagnosis variations are shown between pathologists, mainly
due to challenging visual patterns. Different studies have
reported this inter pathologist variation. For example, in [6],
a study including eight pathologists reported a kappa value
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of 0.68, in the diagnosis of 81 prostate slides. In [7] 150
slides were sent to 3 pathologists in two stages, reporting
a kappa value of 0.25 and 0.52, respectively, showing an
improvement after a specific training course. In most of the
cases, this discordance comes from biases of human nature,
such as avoiding extreme ranges, preference of numbers,
confirmation biases, among others [8].

Deep learning approaches have been widely implemented
in recent years, showing promising results to support di-
agnosis and stratification diagnosis [9]. These approaches
deeply decompose information and allow to represent local
and global complex patterns associated to Gleason concepts.
For instance, in [10] it was proposed an automatic method
to classify benign, Gleason 3, 4, and 5 patches in tissue
microarrays. Bulten et al. [11] proposed a semi-supervised
method for classifying Gleason patterns on the whole slide
images, using 3 different CNNs to segment and classify gland
structures. In it [12] was compared different gland segmen-
tation architectures to classify Gleason patterns in whole
slide images. Despite advances in deep representations, the
variability intra and inter-Gleason scores remain as an open
problem, mainly due to rigid learning with stratified and
balanced datasets, which results unreal in clinical domain.

Therefore, this work introduces a semi-hard triplet distance
metric that tackles Gleason stratification from more variable
and challenging positive and negative patches on a particular
Gleason level. This learning scheme allows to deal with
imbalanced set, learning embedding spaces that maximizes
differences among disease stages. The main contributions of
this work can be summarized as follows:

1) A feature embedding space, learning from a triplet loss
scheme, that better discriminate among Gleason scores.

2) The exploration of semi-hard distances on histological
classification problems and the respective integration
with other transfer learning mechanics.

3) An experiment among challenging and close stages
(Gleason 3 and 4) showing state-of-the-art performance
with 74% of accuracy.

II. MATERIALS AND METHODS

Learning semantic distances can be a key issue in
histopatholo-gical Gleason classification, dealing with pat-
tern variability without constrained stratification and artifi-
cial balanced of data. The resulting embedding space from
different deep training strategies are observed in Figure 1.
As observed, the typical representation is overlapped from
a classical classification framework with no separation of
classes. Specifically, the reported classification results are
the contribution of boundary and outlier samples that result

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 3229



Fig. 1: Gleason score distribution. A) well-formed and uniform glands, B) discrete glans with stroma separation, C) cribriform
pattern, D) solid nests, with their respective embedding representations. Top scatter embedding representation from benign
tissue, Gleason score 3, 4, and 5. Bottom scatter embedding representation from Gleason score 3 and 4. High semantic
overlapping and diffused class boundaries are observed from the embedding space, leading classification variability and
weakens Gleason patterns.

different among other classes but especially of the same
class.

A. Learning distance metric

This work explored and adapted triplet loss metric [13],
which uses three samples batches to determine the best
weight of semantic representation from raw visual data. Each
image patch xi is mapped trough a deep net f to obtain
an embedding representation fxi. Formally, the triplet is
defined by an anchor representation sample fxi, a positive
sample representation fx+i , with same class, and a negative
sample fx−i , i.e., a different Gleason grade class w.r.t the
anchor. Hence, a distance D is formulated to minimize the
separation between similar pairs and maximize the space
regarding the anchor and the negative class. The distance
is defined as: D(fxi, fx

+
i )+α < D(fxi, fx

−
i ), where α is

a strength term to force class separation. Such relationship
from deep convolutional representation f allows to learn
semantic embedding spaces that trend to deal with a better
Gleason grade separation. Then, the triplet loss is defined as:

Loss(xi, x
+
i , x

−
i ) =

max{0, α+D(fxi, fx
+
i )−D(fxi, fx

−
i ) (1)

The main advantage of this learning scheme, regarding typi-
cal cross-entropy, is the self-representation grade capability,
which allows to directly model the strong intra-variability re-
ported on Gleason score. The triplet loss can approximate KL
divergence by learning cross-entropy w.r.t to negative sam-
ples, but also entropy regarding the same Gleason sample.
This fact allows to create a robust representation that among
others reduces sensitivity to noise samples, avoids adversarial
examples, and enhances boundary margins among classes, a
fundamental issue on cancer degree characterization.

B. semi-hard negative mining

To find correct triplets are crucial during training to force
learning a robust representation. Nonetheless, selecting all

triplets can be computational expensiveness O(n3), and se-
lecting only hard triplet can generate sample bias and appears
fragile to outliers [14]. To overcome this limitation, this
work adopts semi-hard negative mining to strongly penalize
negative samples, selecting only triplets where the negative
is bounded between D(fxi, fx

+
i ) and the α factor. Then, a

more specific definition of triplet loss mining is:

D(fxi, fx
+
i ) < D(fxi, fx

−
i ) < D(fxi, fx

+
i ) + α (2)

This negative-positive relationship is controlled with α pa-
rameter, allowing to contribute on positive loss on initial
and middle epochs, reducing variance in gradients [13].
To avoid embedding space normalization, this semi-hard
distance was implemented with a cosine distance among
anchor and positive/negative samples, as:

D(fxi, fx
(+,−)
i ) =

fxi · fx
(+,−)
i√

f2xi

√
f2x

(+,−)
i

(3)

C. Inception architecture as backbone

As a backbone net, here it was adopted a CNN representa-
tion that fully characterizes cancer histological patterns, strat-
ified according to Gleason degrees. These architectures allow
to learn complex and multi-level patterns in a set of different
layers and kernels. Specifically, in this work, for binary clas-
sification it was adopted an InceptionV3 architecture [15].
This architecture factorizes symmetric and asymmetric block
convolutions, reducing the number of connections/parameters
without decreasing the network efficiency. For multi Gleason
classification it was adopted the Xception architecture [16],
an extension of InceptionV3, replacing the standard modules
by depth-wise separable convolutions. The main issue to train
such large net architectures is to have a sufficient amount of
data. To overcome this limitation and to take advantage of
previously learned representation, in this work was initially
used a Transfer Learning (TL) scheme. Two different TL
schemes were here validated. Firstly, the selected backbone
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Fig. 2: Embeddings from last inceptionV3 layers for the pathologist 1. Triplet embedding with TL from classical schemes
shows better Gleason differentiation, optimizing the space learning semantic concepts to contrast fine-grained Gleason
patterns.

net was initialized from ImageNet and then adjusted with
a triplet loss. A second TL option was validated in two
steps: First, the model was training with a classical cross-
entropy loss with a TL from ImageNet. Then, the previous
weights were used to adjust embedding space from a coarse
histopathological space using the triplet loss.

D. Experimental setup

Data. Evaluation was carried out over HARVARD Data-
verse [17]. This dataset contains a total of 886 H&E images
with benign tissue, Gleason 3, 4, and 5 scores at 40x
resolution (0.23 microns per pixel) whit a size of 3100×3100
pixels. The dataset was divided into five tissue microarrays
(TMAs) selecting three TMAs to train, one to validation
and one to test. The assignation of Gleason scores was per-
formed by one pathologist over all dataset and an additional
pathologist to the test sub-set. To train, a patch extraction
was performed over each image following the same scheme
reported in [10]. In training, a total of 17785 patches were
extracted from 641 histology images, coding: 2076 patches
for benign tissue, 7226 for grade three, 5207 for grade four,
and 4541 for grade five. In the test for pathologist one, was
extracted 2239 patches from 245 images distributed as: 127
benign patches for benign, 1602 patches to grade three 2121
patches for grade four, and 387 for grade five.
Method setup. To evaluate the proposed embedding scheme
two backbone nets were compared: the inceptionV3 and the
Xception. The net was trained, follows two steps: 1) only top
layers are trained with 5 epochs and 2) the model is fine-
tuned using 20 epochs. An Adam optimizer was used with a
learning rate of 0.001. Regarding triplet loss configuration,
after a hyperparameter tuning, an empirical α factor of 10
was fixed, forcing an optimal and stable Gleason pattern
differentiation without decreasing the network efficiency.
Feature embedding vectors were fixed with a dimension of
512, following a semi-hard triplet negative mining.

III. EVALUATION AND RESULTS

A first experiment was conducted to built an embedding
space using different learning representation schemes. Taking
into account the main Gleason challenge, the experiment was
carried out to differentiate between grades two and three. The
set of resultant embedding vectors are projected into a two-
dimensional space following a t-SNE projection. As show in
Figure 2, the embedding space that results from triplet loss

Scheme Accuracy
InceptionV3 Xception

Cross-entropy loss 71% ± 1.89% 67% ± 1.76%
Triple loss 0.71% ± 2.14% 0.69% ± 1.47%

TL + Triple loss 0.73% ± 1.65% 0.70% ± 2.35%

TABLE I: Evaluation results between inceptionV3 and
Xception architectures for the different setup experiments.

approach achieves a significant separation of grades, which
results promising to understand cancer severity patterns. In
contrast, the embedding space from classical cross-entropy
has a significant overlapping of classes.

Table I summarizes the Gleason grade classification ob-
tained for different learning schemes. In this bi-modal clas-
sification task, the two pathologists obtained an average
accuracy of 71%, which evidenced the challenge of visual
pattern quantification. Each scheme used the InceptionV3
and Xpception nets. In general, the schemes that implement
triplet loss achieve better scores, being the recovered samples
closer to the centroid of the embedding class representation.
The best configuration was achieved by the InceptionV3
(73%), using the classical TL with a further triplet loss
adjustment and for Xception (70%) adjusting directly from
triplet loss. The achieved results show the robustness of
the proposed learning scheme, being more confident the
classified samples, i.e., the points in embedding space are
closer to their respective centroid.

Figure 3 shows a more detailed analysis, obtained from
the confusion matrices between two pathologist references.
It should be noted that there exists a remarkable differ-
ence between pathologists to classify Gleason grade three,
obtaining an average accuracy (agreement) of 47%. The
proposed approach, in contrast, achieves balanced results
between grades and among pathologists. This fact stands
out the robustness of representation and clearly evidence the
significant support that could provide on clinical scenarios.

Finally, the multi-grading severity stratification with Xcep-
tion reported the best results. For training was used an
initial TL adjustment, followed by the triplet loss learning.
In Figure 4 is shown the confusion matrix obtained from
the proposed representation. A main reported drawback
is reported for ”Benign” class, which could be attributed
to patches that consider abundant background because the
automatic delineation on the original dataset. This approach
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Fig. 3: Confusion matrix of triplet loss with TL for Gleason score 3 (G3) and 4 (G4). This approach show remarkable
Gleason differentiation, especially for G3, with more robustness and stable classification.

Fig. 4: Model evaluation on pathologist 1 for Gleason scores
and benign tissue. Benign classification show a drawback
mainly for delineation artifacts in the original dataset.

reaches an average accuracy of 62%, with no static difference
to the accuracy of Arvaniti et al. [10] of 63%.

IV. CONCLUSION

This work introduced the triplet loss training scheme that
naturally models intra and inter-class variation on Gleason
grade stratification. The proposed approach built an embed-
ding space that properly groups samples of tree and four
Gleason degrees, which are the most variable and challenging
grades for expert pathologists. The achieved results showed
a significant performance on patch identification, allowing
to support clinical agreement tasks. Future works include
detailed analysis over new representation space, using larger
datasets, and trying to capture the space topology to properly
classify among Gleason degree patterns.
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