
Simultaneous Localization of Biobotic Insects using Inertial Data and
Encounter Information

Jeremy Cole1, Alper Bozkurt1 and Edgar Lobaton1

Abstract— Several recent research efforts have shown that
the bioelectrical stimulation of their neuro-mechanical system
can control the locomotion of Madagascar hissing cockroaches
(Gromphadorhina portentosa). This has opened the possibility
of using these insects to explore centimeter-scale environments,
such as rubble piles in urban disaster areas. We present an
inertial navigation system based on machine learning modules
that is capable of localizing groups of G. portentosa carrying
thorax-mounted inertial measurement units. The proposed
navigation system uses the agents’ encounters with one another
as signals of opportunity to increase tracking accuracy. Results
are shown for five agents that are operating on a planar
(2D) surface in controlled laboratory conditions. Trajectory
reconstruction accuracy is improved by 16% when we use
encounter information for the agents, and up to 27% when
we add a heuristic that corrects speed estimates via a search
for an optimal speed-scaling factor.

I. INTRODUCTION

Earlier studies in the literature have shown that it is possi-
ble to remote control the locomotion of a Madagascar hissing
cockroach (Gromphadorhina portentosa) via the bioelectrical
stimulation of its neuro-mechanical system [1]. It has also
been shown that this particular species of cockroach exhibits
extreme maneuverability, including wall climbing capabil-
ity [2] and the ability of self-righting themselves. These
roaches grow to be approximately 60mm long and 30mm
wide, with a payload capacity of approximately 15g [1]. The
roaches use a combination of pretarsal claws and adhesive
pads to cling to and move on a wide variety of surfaces [2],
with top speeds of several cm/sec. Their exoskeleton is
a compliant structure, allowing them to fall from heights
and squeeze under obstacles without issue [3]. It has been
proposed that cockroaches outfitted with various electronic
sensor payloads can function as a biological robot (or biobot)
for disaster response, in particular for search, reconnaissance,
and mapping tasks in urban ruins (e.g., for search and rescue
operations) necessitating extreme mobility [4].

Our earlier work [5] has shown that it is possible to
localize biobotic agents using low-cost inertial measurement
units (IMUs) using an inertial navigation system (INS). In
this work, we extend the prior navigation system by adding
the ability to jointly track and refine the poses of multiple
biobots by leveraging proximity information that registers
when the biobots encounter one another—this information

This work was funded by the National Science Foundation under award
CNS 1239243 and ECCS 1554367.

1J. Cole, A. Bozkurt and E. Lobaton are with the Department of
Electrical and Computer Engineering, North Carolina State University,
Raleigh, NC 27695, USA. E-mails: jacole@ncsu.edu, aybozkur@ncsu.edu
and edgar.lobaton@ncsu.edu

Fig. 1. Illustration of biobot trajectories: Agent 1’s trajectory consists
of three trajectory segments, denoted in the figure as T1, T2, and T3.
Each trajectory segment contains a portion of the biobot’s state trajectory,
x̂li(t), and is defined over a time interval, [tsi , tfi], where i denotes
the ith trajectory segment. x̂li(t) is computed by perturbing the trajectory
segment’s speeds and headings via speed and heading perturbation splines,
denoted as Ssi,j and Sψi,j

—respectively—where the subscripts denote
the jth spline piece of the ith trajectory segment. The figure shows the
perturbation splines associated with the second trajectory segment, where
{a1, a2, a3, a4} denote the times associated with the splines’ knots. Agents
1 and 2 have four encounters, denoted by the green stars, and written as
E12 = {τ1, τ2, τ3, τ4}, where τk denotes the time of the kth encounter.

could be obtained from ranging sensors that are attached
to the biobots themselves. Our main contribution is the
development of the aforementioned multi-agent navigation
system, which allows the tracking of biobots with increased
accuracy. Fig. 1 illustrates a biobot following a specific
trajectory through an unobserved region as would be the case
for the use case under consideration.

The remainder of the paper is organized as follows: Sec-
tion II provides a brief summary of work pertaining to inertial
navigation systems; Section III details the problem statement;
Section IV describes the implementation of our multi-agent
navigation system; Section V explains our experimental setup
and Section VI analyzes the performance; and Section VII
concludes the paper and discusses future work.

II. RELATED WORK

Traditionally, position is estimated in an INS by extracting
the linear acceleration of the IMU from its specific force
readings, and performing a double integration on those
linear accelerations. This causes any errors in the specific
force (e.g. sensor noise) to grow quadratically with time,
which makes it almost impossible to track position for more
than a short period of time for all but the most precise
and expensive IMUs. One way to get around this is to
supplement IMUs with additional sensing modalities such

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 4649

as the global positioning system (GPS). Unfortunately, GPS
signals are inaccessible in many enclosed environments, such
as the rubble piles and under the collapsed buildings in
our target application of urban search and rescue. As such,
other techniques must be used to perform pose estimation
using IMUs. One such technique that has been growing in
popularity is to apply machine learning to IMUs to mitigate
the effect of sensor noise. There are two main paradigms for
incorporating machine learning: end-to-end frameworks and
pseudo-measurements. The goal of an end-to-end framework
(e.g. [6], [7]) is to use a learned model to directly estimate the
pose of an agent using inertial data as the input. The pseudo-
measurement approach (e.g. [8], [9]) uses the inertial data to
train a model that is subsequently used as a measurement
(e.g. a velocity estimator) in an existing navigation system
such as a Kalman Filter. Some authors opt to use the learned
model as a fail-safe in situations where the primary navi-
gation system fails (e.g. [10], [11]). An extensive literature
review of inertial navigation with machine learning can be
found in [5].

In the absence of GPS, signals of opportunity can be used
to increase localization accuracy (e.g. [12], [13]). Signals
of opportunity are relative measurements to a signal source
whose location can be estimated reliably. In multi-agent
systems, the relative measurements between the agents can
be used to achieve a desired action (e.g. formation-control)
[14], [15], [16]. These relative measurements can also be
used for joint localization of the agents in the system (e.g.
[17]). Joint localization of agents is also explored extensively
in the area of wireless sensor networks (e.g. [18], [19]),
where the goal is to use relative measurements between
sensors to localize the sensors and/or targets of interest.

We view the biobots as a multi-agent system, where
the goal is to reduce biobot localization errors via ranging
information that detects when the biobots encounter each
other. The biobot encounters can be viewed as signals of
opportunity that enforce consistency in the estimates of
biobots’ position.

III. PROBLEM STATEMENT

Similar to [5] and as illustrated in Fig. 1, we consider a
scenario in which we need to search an area that is not easily
accessible via conventional tools. A group of biobotic agents
will explore the environment while collecting relevant sensor
data. Once a biobot enters the target area, its pose is no longer
observable; however, each biobot will eventually leave the
target area, whereby its pose will once again be observable.
Additionally, each biobot is equipped with a ranging sensor
that can be used as a proximity sensor to detect nearby
biobots. The goal is to reconstruct each biobot’s trajectory
using inertial data so that signals of interest can be localized.

This problem is split into two stages (see Fig. 2): Stage
I aims to estimate each biobot’s trajectory independently,
and Stage II aims to refine the individual trajectories by
leveraging ranging information from their encounters with
each other. The first task was described in detail in [5], and
we summarize that paper’s problem setup in the proceeding

Fig. 2. Multi-agent navigation system pipeline: Left: In Stage I, a single-
agent inertial navigation system is used for obtaining trajectory estimates
for each of the biobots—details can be found in [5]. Right: In Stage II, the
individual biobot trajectories are jointly optimized (using biobot encounter
information) to obtain refined trajectory estimates that have lower error.

paragraph. Here, we assume that the agents are restricted to
planar (2D) environments (see [5] for more details).

We define a biobot’s state, xl(t), to be its position rllb =

(xllb, y
l
lb), speed sllb =

√
(ẋllb)

2 + (ẏllb)
2 and heading ψlb(t).

The notation rllb means the position of the body frame b
with respect to the local frame l, resolved in frame l. Frame
l is a local tangent frame that uses Cartesian coordinates
and used as the reference and resolving frames. Frame b is
the body frame and centered on the IMU that is mounted
to the body of the biobotic agent itself; the origin of frame
b is rllb. We assume that the biobotic agent always moves
in the direction that it is facing. Under this assumption,
the biobot’s velocity is given by vllb = ṙllb = (ẋllb, ẏ

l
lb) =

(sllb · cos(ψlb), s
l
lb · sin(ψlb)). The biobot’s true trajectory

is a smooth mapping in R4, xl(t) : [0, tf] → R4, where
tf denotes the biobot’s exit time. Our goal is to find a
reconstruction of xl, x̂l(t; θ) : [0, tf]→ R4, where θ denotes
the set of parameters that govern x̂l. The optimal parameters
are obtained by minimizing the following cost function for
each biobot:

Ji(θi) =

∫ tfi

tsi

||xli(t)− x̂li(t)||2 dt

s.t. x̂li(tsi) = xli(tsi) , x̂li(tfi) = xli(tfi)
(1)

subject to the boundary conditions, where i refers to the
ith biobot, and ts and tf denote the entry and exit times,
respectively. The multi-agent extension of the navigation
system can be achieved by adding the ranging information
as constraints:

JM (Θ) =
∑
i

Ji(θi)

s.t. x̂li(tsi) = xli(tsi) , x̂li(tfi) = xli(tfi) ∀i

Eij =
{
t | d(r̂li(t), r̂

l
j(t)) ≤ δ

}
∀i, j

(2)

subject to the boundary conditions, for each of the agents,
where Θ is the set of all optimizable parameters for all of the
biobots. d(·) is a function that returns the Euclidean distance
between its two inputs—that is, biobots i and j—and δ
refers to the sensing range of the proximity sensor. Finally,
Eij :=

{
t | d(rli(t), rlj(t)) ≤ δ

}
denotes the set of encounters

between agents i and j and is defined to occur at the times

4650

when the agents are, at most, δ-distance away from each
other. In this paper, we assume that the proximity sensor is
an ideal sensor that has perfect detection rate and zero false-
positive rate. This idealized sensor is implemented using the
ground truth position data for the biobots.

IV. METHODOLOGY

In Section IV-A, we summarize the navigation system
(also described in [5]) since it is used for individually
estimating each agent’s trajectory. Afterwards, in Section
IV-B, we describe the extension that is needed to jointly
optimize the agent trajectories.

A. Single-Agent Localization

Each biobot has a thorax-mounted IMU that is capable of
generating specific force and angular rate readings. These
IMU signals are then windowed using a sliding-window
approach and features are extracted from each window of
IMU data. The features are then used to estimate the speed
and heading of the biobot and these estimates are linerarly
interpolated to create continuous versions of themselves,
denoted as ŝllb(t) and ψ̂lb(t)—respectively.

The trajectories can include multiple areas where the
agent’s pose is unobservable. This is handled with the intro-
duction of trajectory segments {Tk}, where the kth trajectory
segment is the portion of the agent’s trajectory that occurs
between the kth pair of entry/exit points. The agent state
is computed by perturbing the interpolated speed/heading
curves as follows:

ŝl∗lbk(t) = ŝllbk(t) + Ssk(t)

ψ̂∗lbk(t) = ψ̂lbk(t) + Sψk
(t)

(3)

where k denotes the trajectory segment, ŝl∗lbk is the perturbed
speed, ψ̂∗lbk is the perturbed heading, and Ssk(t) and Sψk

(t)
denote the speed and heading perturbation splines, respec-
tively. Each segment has its own perturbation splines, which
are clamped piecewise-cubic splines. The perturbed speed
and heading trajectories are then used to compute:

r̂llbk(t) = rllbk(tsk) +

∫ t

tsi

v̂llbk(t) dt

v̂llbk(t) =
[
ŝl∗lbk(t) · cos

(
ψ̂∗lbk

)
, ŝl∗lbk(t) · sin

(
ψ̂∗lbk

)]>. (4)

The optimizable parameters of Tk are the coefficients of Ssk
and Sψk

. These coefficients can be determined by optimizing
Equation 1 and adding its constraints as penalty terms—note
that the constraint on the initial position, x̂(ts) = x(ts), is
automatically satisfied because we assume that the agent’s
state is known at the entry point. The resulting cost function,
J̃ , is shown below for a single trajectory segment:

J̃(θ) =

∫ tf

ts

(
Ws · Ss(t; θs)2 + Wψ · Sψ(t; θψ)2

)
dt

+Wr ·
∣∣∣∣∣∣rllb(tf)− r̂llb(tf ; θ)

∣∣∣∣∣∣2 (5)

where θs and θψ denote the optimizable parameters for the
speed and heading perturbation splines. The integrand is

computed numerically using a sampling rate of 30 Hz, and
Ws, Wψ , and Wr are weights that are used as hyperpa-
rameters. We use trajectory segments of two-minute length
and use the hyperparameter values detailed in [5]—namely,
two-second knot spacing for the perturbation splines, Ws =
Wψ = 1, and Wr = 120.

B. Multi-Agent Extension

The multi-agent extension of Equation 5 that is used for
jointly optimizing the agent trajectories can be achieved
by reformulating the boundary conditions of Equation 2
that involve ranging measurements as a penalty terms. Each
individual ranging measurement can be realized as a rectified
linear unit (ReLU) [20], where ReLU(·) = max(0, ·). The
ReLUs are used for defining a proximity cost that grows
linearly whenever there are two agents that violate the
distance requirement mandated by a particular encounter.
This yields the surrogate cost function over a trajectory
segment Tk:

J̃M (Θ) =
∑
i

J̃i(θi) +Wp ·
∑
i,j

∑
t∈Eij

ReLU (γij(t))
2

γij(t) = ||r̂li(t)− r̂lj(t)|| − δ
(6)

where Θ denotes the optimization parameters for all of
the agents that encounter one another in the kth trajectory
segment; t is restricted to the kth trajectory segment, t ∈ Tk;
i and j denote the ith and jth agents, respectively; r̂i and r̂j
denote the estimated positions of agents i and j, respectively;
finally, Wp is the hyperparameter for the proximity cost and
controls the extent to which the ranging measurements will
influence the optimization process. We found that Wp = 120
yielded satisfactory results for our dataset, and we optimized
Equation 6 using the fminunc function in MATLAB (The
MathWorks Inc, Natick, MA, USA).

V. EXPERIMENTAL SETUP

We used the same dataset that was recorded in [5]. Data
was collected from an adult female Madagascar hissing cock-
roach (Gromphadorhina portentosa) using a MetaMotion C
sensor board (Mbientlab Inc., San Francisco, CA, USA)
that was attached to its thorax. This sensor board contained
an IMU with a three-axial accelerometer and a three-axial
gyroscope. The biobotic agent was placed in a circular arena
with a diameter of 115 cm (see Fig. 3) and recorded using
a webcam. Inertial and video data was collected for nine
separate trials, each of which lasted for approximately 30
minutes. The recorded data was used for creating the biobot’s
ground truth trajectory via the video tracking algorithm
discussed in [5].

We simulated the effect of having five agents by taking the
last five trials and temporally aligning their IMU and video
data so that they started at the same time. We generated
the encounter information of these five agents by tracking
their time-aligned ground truth positions and flagging the
instances when there were two, or more, agents that came
within a δ-distance of each other. This setup creates an
idealized proximity sensor that has a sampling rate equal

4651

Fig. 3. Experimental setup: Planar (2D) circular arena with a 115 cm
diameter. Local tangent reference frame, l, is aligned with the homography
points (highlighted with red circles) that are used to convert points from
image space (pixels) to physical space (cm). The time-aligned agents (5-
9) are marked with magenta squares and overlaid on top of the video
for the biobotic agent. Each agent’s sensing range is shown with yellow
circles, which turn into green circles when another agent comes within
sensing range (δ= 10cm). The origin of frame l is located at the center of
the circular arena. Figure adapted from [5].

to the video frame rate (30 Hz). The process for obtaining
encounter information is shown in Fig. 3.

VI. RESULTS AND DISCUSSION

We used the first four trials for training, and the last five
trials for testing. Our analyses are based on a sensing range
of δ = 10cm. A video illustrating the trajectories and the
results of our approach can be found online1.

A. Agent Interaction Analysis

Table I shows the average position errors of the jointly-
optimized agent trajectories in centimeters. For each specific
number of agents, as specified in columns 2 through 4, there
is a choice in which subset of agents to use (e.g. if three
agents are to be used, then agent #5’s trajectory could be
optimized using agents {5, 6, 8}, {5, 7, 9}, etc.). We account
for these choices by averaging the trajectory errors over
all trajectory segments for all agent subsets. The “Single
Agent” column refers to the average position error when
the agents are individually optimized. Lastly, the final rows
of the preceding tables list the column-wise averages, and
the improvement

(
1− Error Multi Agent

Error Single Agent

)
· 100% of those

averages over the single-agent case.
Table I shows that the multi-agent cost function described

in Equation 6 can provide a noticeable reduction in the
average position error of each agent, regardless of whether
3, 4, or 5 agents are used for the joint optimization —the “+
Scaling” column is discussed in Section VI-B. Our algorithm
assumes that we have equal confidence in the accuracy of
each agent’s trajectory. A downside to this can be seen in
the entries for agent #8 in Table I. In all cases, the joint
optimization makes the average position error worse than its
single-agent counterpart. This can be explained by the fact
that agent #8 has the lowest trajectory segment errors of any

1https://youtu.be/SCMKm8tUfXw

Fig. 4. Agent trajectory errors (varying number of agents): Position errors
(cm) averaged across all agent subsets and all agent IDs (5-9) for varying
number of agents. Ti denotes the ith trajectory segment and the curves are
defined as follows: Blue: averaged individual trajectories (using no speed
scaling) are shown as a baseline; Orange: averaged curves for the 3-agent
subsets; Yellow: averaged curves for the 4-agent subsets; Purple: averaged
curves for the 5-agent subset. .

of the five agents. As such, when other agents are used for
“correcting” agent #8’s trajectory, this actually worsens it.
Further examples of this issue are shown in trajectory seg-
ment T5 (see Fig. 4), where agent #6 leaves the plane, which
violates the 2D assumption made in Section III. As a result
of this, agent #6 has an erroneous trajectory that worsens all
agents that are jointly optimized with it—this causes all five
agents to have erroneous trajectories, rather than just agent
#6, which explains why the jointly optimized trajectories are
noticeably worse than the averaged individual trajectories in
this segment. A potential solution to this problem is to add
a heuristic that can determine the confidence that should be
placed in an agent’s trajectory; however, this is the beyond
the scope of presented work.

The runtimes for our multi-agent system were 2.8 hrs,
5.2 hrs and 8.4 hrs for the 3-agent, 4-agent, and 5-agent
cases; respectively. All results were obtained using MATLAB
2018b on a desktop computer with the following specifica-
tions: Intel Core i7-7700k CPU, Nvidia GeForce GTX Titan
X GPU, 64GB RAM, and 64-bit Ubuntu 16.04.6 LTS OS.
For comparison, each single-agent optimized trajectory took
approximately 26 min to generate.

TABLE I
POSITION ERROR (CM)

Agent ID 3-Agent 4-Agent 5-Agent + Scaling Single Agent

5 7.58 7.13 6.82 4.97 9.23
6 7.84 7.24 6.64 6.00 9.62
7 5.55 5.35 5.15 4.99 6.10
8 6.51 6.60 6.57 6.06 6.07
9 6.66 6.59 6.42 5.59 6.73

Average 6.82 6.58 6.32 5.52 7.55
Improv. 9.62% 12.86% 16.29% 26.86% N/A

4652

B. Discussion

As previously pointed out, there is flexibility in the choice
of sensing range because the number of encounters has a
small impact on the overall runtime of the navigation system.
We found δ = 10 cm to be an adequate value for this
experiment. Performance could be further improved if a
heuristic is added to determine the confidence that should
be placed in an agent’s trajectory. Such a heuristic could be
used to mitigate the effects of erroneous agent trajectories
(e.g. trajectory segment #5 in Fig. 4). This could even be
used to improve those erroneous trajectories by providing a
mechanism to increase the effect that other agents have on the
erroneous agent(s). Performance could be further improved
by using the biobot encounters to scale the estimated speeds
of the biobot trajectories. An example of this is shown in
the “+ Scaling” column of Table I where the speed scaling
strategy (applied to the 5-agent scenario) consisted of three
steps: First, the agent trajectories were evaluated at seven
different speed scalings (80%-110%) using Equation 5 and
the permutation of agent speed scalings (e.g. agent 1: 90%,
agent 2: 105%, etc.), which minimized the proximity cost
component of Equation 6, was determined—this type of
speed scaling is identical to a constant scaling factor that
is applied to the estimated speed of an entire trajectory
segment. Second, the aforementioned method identified that
agent 5 has abnormally low speed scaling. Third, a joint
optimization was performed where agent 5’s speed were
scaled based on the permutation method’s speed scalings,
but no other agents had their speeds scaled. This simple
strategy nearly doubled the performance of the 5-agent
scenario from 16% to 27%. However, a full evaluation of this
strategy would require a larger datasets with more agents for
evaluation.

As a last point, we want to emphasize that our dataset
was taken from a planar (2D) circular arena, and that further
testing is needed to see how our multi-agent navigation sys-
tem performs in more complex platforms similar to disaster
environments.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a multi-agent naviga-
tion system that jointly optimizes agent trajectories using
proximity information and detects when agents encounter
each other. Our multi-agent navigation system improves
trajectory accuracy by refining trajectories that have been
independently optimized. Future work could forgo the single-
agent optimization as a preliminary step; instead, the multi-
agent cost function could be directly applied to the non-
optimized agent trajectories. Alternatively, future work could
focus on the development of a heuristic for assessing the
validity of an agent’s trajectory estimate, or the incorporation
of a speed scaling function. Finally, future work could also
validate the proposed navigation system in more complex
environments such as more realistic 3D environments with
obstacles.

REFERENCES

[1] T. Latif, “Tissue-electrode interface characterization for optimization
of biobotic control of roach-bots.” Ph.D. dissertation, North Carolina
State University, 2016.

[2] A. van Casteren and J. R. Codd, “Foot morphology and substrate
adhesion in the madagascan hissing cockroach, gromphadorhina por-
tentosa,” Journal of insect science, vol. 10, no. 1, p. 40, 2010.

[3] K. Jayaram and R. J. Full, “Cockroaches traverse crevices, crawl
rapidly in confined spaces, and inspire a soft, legged robot,” Pro-
ceedings of the National Academy of Sciences, vol. 113, no. 8, pp.
E950–E957, 2016.

[4] T. Latif and A. Bozkurt, “Roach biobots: Toward reliability and
optimization of control,” IEEE pulse, vol. 8, no. 5, pp. 27–30, 2017.

[5] J. Cole, A. Bozkurt, and E. Lobaton, “Localization of biobotic insects
using low-cost inertial measurement units,” Sensors, vol. 20, no. 16,
p. 4486, 2020.

[6] M. A. Esfahani, H. Wang, K. Wu, and S. Yuan, “Aboldeepio: A
novel deep inertial odometry network for autonomous vehicles,” IEEE
Transactions on Intelligent Transportation Systems, 2019.

[7] C. Chen, X. Lu, A. Markham, and N. Trigoni, “Ionet: Learning to
cure the curse of drift in inertial odometry,” in Thirty-Second AAAI
Conference on Artificial Intelligence, 2018.

[8] M. Brossard, A. Barrau, and S. Bonnabel, “Rins-w: Robust inertial
navigation system on wheels,” arXiv preprint arXiv:1903.02210, 2019.

[9] W. Liu, D. Caruso, E. Ilg, J. Dong, A. Mourikis, K. Daniilidis,
V. Kumar, J. Engel, A. Valada, and T. Asfour, “Tlio: Tight learned
inertial odometry,” IEEE Robotics and Automation Letters, 2020.

[10] S. Adusumilli, D. Bhatt, H. Wang, V. Devabhaktuni, and P. Bhat-
tacharya, “A novel hybrid approach utilizing principal component
regression and random forest regression to bridge the period of gps
outages,” Neurocomputing, vol. 166, pp. 185–192, 2015.

[11] J. Li, N. Song, G. Yang, M. Li, and Q. Cai, “Improving positioning
accuracy of vehicular navigation system during gps outages utilizing
ensemble learning algorithm,” Information Fusion, vol. 35, pp. 1–10,
2017.

[12] Z. Z. M. Kassas, M. Maaref, J. J. Morales, J. J. Khalife, and
K. Shamei, “Robust vehicular localization and map matching in urban
environments through imu, gnss, and cellular signals,” IEEE Intelligent
Transportation Systems Magazine, vol. 12, no. 3, pp. 36–52, 2020.

[13] C. Yang and A. Soloviev, “Mobile positioning with signals of oppor-
tunity in urban and urban canyon environments,” in 2020 IEEE/ION
Position, Location and Navigation Symposium (PLANS). IEEE, 2020,
pp. 1043–1059.

[14] X. Ge, Q.-L. Han, D. Ding, X.-M. Zhang, and B. Ning, “A survey
on recent advances in distributed sampled-data cooperative control
of multi-agent systems,” Neurocomputing, vol. 275, pp. 1684–1701,
2018.

[15] S. Knorn, Z. Chen, and R. H. Middleton, “Overview: Collective control
of multiagent systems,” IEEE Transactions on Control of Network
Systems, vol. 3, no. 4, pp. 334–347, 2015.

[16] L. Ding, Q.-L. Han, X. Ge, and X.-M. Zhang, “An overview of recent
advances in event-triggered consensus of multiagent systems,” IEEE
transactions on cybernetics, vol. 48, no. 4, pp. 1110–1123, 2017.

[17] P. Zhu and W. Ren, “Multi-robot joint localization and target tracking
with local sensing and communication,” in 2019 American Control
Conference (ACC). IEEE, 2019, pp. 3261–3266.

[18] D. P. Kumar, T. Amgoth, and C. S. R. Annavarapu, “Machine learn-
ing algorithms for wireless sensor networks: A survey,” Information
Fusion, vol. 49, pp. 1–25, 2019.

[19] C. Zhang, P. Patras, and H. Haddadi, “Deep learning in mobile and
wireless networking: A survey,” IEEE Communications surveys &
tutorials, vol. 21, no. 3, pp. 2224–2287, 2019.

[20] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” arXiv preprint arXiv:1710.05941, 2017.

4653

