
  

  

Abstract— Blood pressure (BP) is an important indicator for 

prevention and management of cardiovascular diseases. 

Alongside the improvement in sensors and wearables, 

photoplethysmography (PPG) appears to be a promising 

technology for continuous, non-invasive and cuffless BP 

monitoring. Previous attempts mainly focused on features 

extracted from the pulse morphology. In this paper, we propose 

to remove the feature engineering step and automatically 

generate features from an ensemble average (EA) PPG pulse and 

its derivatives, using convolutional neural network and a 

calibration measurement. We used the large VitalDB dataset to 

accurately evaluate the generalization capability of the proposed 

model. The model achieved mean errors of -0.24 ± 11.56 mmHg 

for SBP and -0.5 ± 6.52 mmHg for DBP. We observed a 

considerable reduction in error standard deviation of above 

40% compared to the control case, which assumes no BP 

variation. Altogether, these results highlight the capability to 

model the dependency between PPG and BP. 

I. INTRODUCTION 

Hypertension or persistently elevated blood pressure (BP) 
is a common life-threatening condition, affecting 
approximately one-third of the adult population. It is a key 
factor of cardiovascular diseases (CVDs), the leading cause of 
death worldwide [1]. Generally, without warning signs and 
symptoms, most people are unaware of the issue in its early 
stages. Moreover, BP can be rapidly affected by external 
factors, e.g., physical activity, emotions, and drugs. For these 
reasons, it is very important to monitor such a vital 
physiological parameter regularly and continuously. It makes 
an early diagnosis and, in turn, proper management of 
hypertension and related CVDs possible. The gold standard for 
continuous BP measurement is the arterial line, which has high 
risk of infection and is limited to a clinical environment. 
Therefore, sphygmomanometry is conventionally taken as 
reference for non-invasive BP monitoring. However, such 
cuff-based approach is uncomfortable for patients, and it is not 
suitable for continuous measurements. 

To overcome these limitations, improving non-invasive, 
cuffless and continuous BP monitoring has been a major focus 
of research in recent years. With the growing presence of 
wearable, the use of a single biomedical signal for such a task 
has attracted a lot of attention. Photoplethysmography (PPG) 
is well-suited due to its simplicity, low cost and possible 
application to wearables and smartphones. This optical 
technique measures the blood volume variations in the 
microvascular bed of tissues using a light-emitting diode and 
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a photodetector. Despite having a complex relationship, the 
PPG has similarity with the arterial BP morphology [2], 
showing its potential for BP estimation. Even if PPG is 
affected by local phenomena, its waveform results from the 
propagation of the central pressure pulse to the periphery and 
its morphology carries information about central BP. It is 
precisely this information we seek to extract to remain 
unaffected by local effects. Different approaches were 
investigated. Notably, methods based on pulse wave analysis 
(PWA) of the PPG waveform and its derivatives seem 
promising, and have revealed some time- and frequency-
domain features that play a key role in the modeling of BP [3]–
[5]. A regression model is then applied to map the features into 
BP values. Several machine learning (ML) methods have also 
been considered for this task, e.g., support vector regression 
[6], regression trees [7] and neural networks (NN) [4]. 
However, most of the current studies addressing BP estimation 
from PPG signals are mainly based on features derived from 
the pulse morphology. Such a feature engineering process 
highly depends on the signal quality. Furthermore, the 
computation of some complex features is time consuming and 
requires expert knowledge.  

Alternatively, a model can automatically derive its own 
features – a process known as feature learning. The idea is to 
capture dynamic information of the PPG signal in a relevant 
latent space. It can be achieved with supervised NN. Although 
promising, the main limitations of such an approach are the 
large amount of data required to train the model and the 
possible loss of interpretability. Finding the best architecture 
and tuning the hyperparameters is also challenging. The 
majority of proposed models combine multiple physiological 
signals, typically PPG and electrocardiogram (ECG) [8]. To 
the best of our knowledge, only a few approaches attempted to 
take raw signals directly as input. The work in [9] proposed a 
complex spectro-temporal model based on PPG, its derivatives 
and spectrograms. More recently, the authors of [10] proposed 
to estimate BP from the spectrogram of a short PPG window 
and to use a Siamese architecture for calibration. Nevertheless, 
the results of these two attempts were insufficient for medical 
application. The authors of [11] estimated the BP from PPG 
signal and derivatives combining a convolutional NN (CNN) 
and a fully connected network. This study used a small dataset, 
making it difficult to evaluate the generalization capability. 

In the context of BP monitoring from PPG signals, we have 
previously developed oBPM® [12]. This algorithm based on 
PWA has shown to accurately track systolic and mean BP 
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changes in patients undergoing general anesthesia [13]. In 
parallel, we studied the potential of a data-driven approach, by 
integrating ML techniques into oBPM® technology [14]. In the 
present work, we investigate a feature learning approach for 
such a task. The model is based on an ensemble averaged pulse 
(EA) computed over a PPG window, without any requirements 
of feature engineering. It combines a CNN for feature 
extraction and a fully connected network to estimate BP from 
these features. Taking advantage of the large open database 
VitalDB [15], our model was train and evaluated on data with 
acute BP variations. The calibration is done by incorporating 
an initial measurement in the model. Such a procedure is well 
appropriate for a possible use case.  

II. MATERIALS AND METHODS 

A. Dataset 

The proposed method was trained and tested on part of the 
data retrieved from the VitalDB data bank. This open database 
was collected at the Seoul National University Hospital 
department of Anesthesia (Seoul, Republic of Korea). The 
study was approved by the local ethics committee (H-1408-
101-605, NCT02914444 at ClinicalTrials.gov). The 
experimental setup is described in [15]. The database includes 
multiple biosignals of adult patients recorded during various 
non-cardiac surgeries (lasting in average 3 hours and going up 
to more than 16 hours). We selected those including arterial 
line and PPG signals, both necessary for our research, which 
reduced the database to 3326 patients. Interestingly, due to 
drug administration, this dataset includes large BP variations 
over time, providing a wide range of BP values over which to 
train and test our approach. 

B. Pulse ensemble averaging  

After filtering the raw PPG signal to remove the baseline 

and reduce noise, the signal was then split into non-

overlapping 20-second windows and aggregated into 

ensemble-averaged (EA) pulses. More specifically, one EA 

pulse, its first (velocity plethysmography: VPG) and second 

(acceleration plethysmography: APG) derivatives, its cardiac 

period, and an associated quality index was extracted from 

each window. This process is described in more detail in [13]. 

The quality index (≥ 80%) and the reference variability 

(standard deviation/average ≤ 10%) were then used to exclude 

windows with too much noise or signal distortions. Patients 

with less than 5 EA pulses were also excluded. To standardize 

their lengths, the EA pulses were padded with zeros up to the 

maximum observed cardiac period and then resampled to a 

length of 256. The overall process resulted in 1567 patients 

and a total of 126’327 EA pulses. Some BP characteristics of 

this dataset are presented in TABLE I. To ensure reliability of 

the results, 80% of the data was used to train the model, while 

the remaining 20% was kept for evaluation. Patients were 

carefully distributed across the two sets in a stratified manner, 

using the mean and standard deviation of the systolic BP 

(SBP). Each patient only contributed to the train or test set.  

TABLE I.   DATASET CHARACTERISTICS (N = 1567) 

Characteristics Mean ± STD (Range) 

SBP (mmHg) 115.4 ± 13.7 (50.8 – 260.5) 

DBP (mmHg) 61.4 ± 7.4 (30.1 – 143.5) 
MAP (mmHg) 81.1 ± 9.9 (37.2 – 196.9)  

C. Calibration approach  

An initial calibration process is usually necessary to correct 
potential baseline drift. Therefore, we selected an approach 
including one initial measurement. The model took as inputs a 
calibration EA pulse with the corresponding BP value and an 
estimation EA pulse. The calibration pulse was always taken 
from the same recording as, and before the occurrence of, the 
estimation EA pulse. The average timespan between 
calibration EA pulse and estimation EA pulse (Δt) is 74 
minutes, ranging from 1 minutes to over 16 hours.  

D. Model architecture 

A schematic description of the overall model is illustrated 
in Figure 1. The two feature extractors were identical, sharing 
the same architecture and parameters. They received in 
parallel the estimation and calibration inputs. The output 
features were then concatenated together with the BP value of 
the calibration segment. The BP values of the estimation 
segment were used as ground truth during the training process. 
The resulting feature vector was finally fed into a regression 
model for the BP estimation.  

 
Figure 1. Learning approach with a calibration measure.  

We proposed to take advantage of CNN to extract features 
from temporal domain inputs, including the EA pulse and its 
derivatives. The CNN architecture is presented in Figure 2. In 
total, 4 convolutional blocks were stacked to extract temporal 
features. A rectified linear unit (ReLU) activation function was 
applied after each 1-dimensional convolution. The last layer of 
each block was a max-pooling layer to reduce the inputs 
dimensionality. Finally, a dropout layer came after the 4 
convolutional blocks to reduce overfitting. The concatenated 
features were then fed into a series of two fully connected (FC) 
layers with ReLU activation functions. And the final ReLU 
outputted the estimated BP value. The network weights were 
initialized using the He method proposed in [16], which is 
well-suited to ReLU like activations.  

 
Figure 2. CNN architecture for feature extraction. The information in 

brackets indicates to the number of channels and the kernel size.  

E. Training setting 

The model was implemented in Python using the PyTorch 
deep learning framework. Two models were trained in a fully 
supervised manner. One to output the systolic BP value (SBP) 
and the other the diastolic BP value (DBP). The Adam 
algorithm was chosen to optimize the network parameters 
with β1 = 0.9, β2 = 0.999 and a weight decay of 10-4. The 
learning rate was set to 10-4. The BP estimation being a 
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regression problem, the Huber loss was selected as the loss 
function. This smooth version of the L1 loss is more robust to 
outliers than the mean square error (MSE) and more efficient 
than the mean absolute error (MAE) due to continuous 
derivative. The model was trained over 25 epochs with a batch 
size set to 32. All hyperparameters were initially defined 
based on a literature review and then experimentally adapted 
using 10-fold cross-validation on the training data. 

F. Evaluation metrics 

The performance was assessed by comparing the 

estimates of the proposed model to their corresponding 

invasive reference values. By analogy with the ISO 81060-

2:2018 norm [17], not fully applicable to noninvasive cuffless 

methods, we computed the mean error (ME) between the 

estimated and reference BP values along with the standard 

deviation of this error (STDE). A flat model was used as 

baseline performance. With the assumption of no BP change, 

it outputs the calibration reference as BP estimate. Beyond 

simply being a control case, its STDE also gives interesting 

insights regarding the BP variations in the dataset.  

III. RESULTS 

TABLE II summarizes the overall performance of the 
proposed model with different input combinations for SBP 
estimation in terms of ME and STDE in mmHg. The best 
performance was obtained when using the PPG and the APG 
as inputs. This model achieved an estimation error of -0.24 ± 
11.56 mmHg for SBP. The performance for DBP is presented 
in TABLE III, the estimation error was -0.50 ± 6.52 mmHg. 

TABLE II. SBP ESTIMATION PERFORMANCES IN MMHG 

 Train Test 
Model ME STDE ME STDE 

PPG 0.28 9.43 0.41 11.58 

PPG + APG -0.31 10.27 -0.24 11.56 

PPG + VPG + APG -0.65 9.60 -0.46 11.75 
Flat model 0.08 20.59 0.02 21.05 

TABLE III.  DBP ESTIMATION PERFORMANCES IN MMHG 

 Train Test 

Model ME STDE ME STDE 

PPG -0.25 5.25 -0.33 6.65 

PPG + APG -0.40 5.62 -0.50 6.52 

PPG + VPG + APG 0.42 5.09 0.43 6.60 
Flat model 0.10 11.09 -0.02 11.34 

The 2D histograms plots in Figure 3 and Figure 4 illustrate 
the correlation between estimated BP values and the 
corresponding arterial BP value in the test set for SBP and 
DBP, respectively. The correlation coefficient is 0.84 for SBP 
and 0.85 for DBP.  

IV. DISCUSSION 

To the best of our knowledge, few studies have 
documented the usefulness of convolutional networks for 
cuffless BP estimation, even less exploiting PPG without 
adding concurrent ECG signals. In this paper, we proposed a 
novel BP estimation method based on CNN for automatic 
feature extraction that achieves promising results. 

The first question concerned the choice of starting signals. 
Unlike most proposed methods, the idea here was to only use 
a PPG sensor, which is more suitable for long-term wearable 

applications. Nevertheless, combining the PPG pulse with its 
second derivative tended to yield more generalizable features 
and therefore to reduce the overfitting between the training and 
test performance metrics (TABLE II). This observation is not 
surprising and is consistent with the literature review and 
feature engineering approaches, where characteristic points of 
the APG are typically used in BP estimation model [5]. It 
confirms that APG carries more relevant information about 
arterial stiffness and indirectly about BP than VPG [18].  

The proposed model significantly outperformed the flat 
model, with a reduction in STDE of approximately 45% for 
SBP and 43% for DBP, thereby confirming that the PPG and 
its derivatives enclose information relating to the BP. The 
estimation error was -0.24 ± 11.56 mmHg for SBP and -0.50 
± 6.52 mmHg for DBP. Such ranges when dealing with large-
scale data highlight the difficulty of developing a robust and 
generalizable model. The higher precision for DBP estimation 
compared to SBP estimation might be partly explained by the 
lower variance of DBP (flat model in TABLE II vs TABLE III). A 
possible limitation of the present architecture is that two 
separate models were trained to output SBP and DBP, 
respectively. As those factors are closely related, a single 
model could be trained to simultaneously estimate SBP and 
DBP. With such multitask learning approach, the model could 
better capture shared representation and avoid overfitting. This 
idea will be investigated in future work. The 2D histograms 
for SBP and DBP in Figure 3 and Figure 4 show that the 
proposed model tends to underestimate high BP and 
overestimate low BP. The reason behind this is unclear and 
needs further investigation. 

 
Figure 3. 2D histogram of estimated and reference SBP in mmHg with a 

linear fit (dark gray) and perfect correlation (light gray).  

 
Figure 4. 2D histogram of estimated and reference DBP in mmHg with a 

linear fit (dark gray) and perfect correlation (light gray).  
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A direct comparison of the results with the literature is 
challenging, as multiple factors alter the estimation error, 
including the pool of subjects, the degree of BP variations or 
the calibration method. As far as we know, only [19] presented 
a PPG-based BP estimation model trained and evaluated on 
this large VitalDB database. Although their model obtained 
better performances (0.016 ± 7.66 mmHg for SBP and -0.043 
± 4.22 mmHg for DBP), important aspects should be 
highlighted. This method was based on PPG morphology 
features, whereas our approach removed the feature 
engineering step and achieved automatic feature extraction. 
Furthermore, the difference in performance is mainly due to 
the impact of calibration method. In [19], the offset was 
adjusted using patient’s recording average BP values. Such a 
procedure is appropriate for a feasibility study but hardly 
applicable in practice. Our proposed model was designed to 
include one initial measurement. It is more representative of a 
possible use case, where the calibration is typically done using 
a cuff measurement at the doctor’s office. The necessity of a 
calibration process is one of the main limitations of current 
attempts for cuffless BP estimation model. The need of a 
measure with an existing acceptable standard might increase 
the complexity of potential applications. An alternative could 
be to simplify the calibration by using the patient’s personal 
information, such as age, weight, height, and gender. A deeper 
study should therefore be conducted to assess the dependence 
on calibration, and its frequency, and therefore evaluate the 
stability of the approach. 

Besides the large number of patients needed for NN 
training, the dataset used has other interesting aspects. 
Recorded during surgical procedures with anesthetic drug 
administration, it includes more acute BP variations over time 
than most available datasets. Despite the promising results, a 
more in-depth evaluation of the model ability to track these 
acute BP changes relative to small variations should be 
conducted.  

One challenge faced by NN is the high dependence on the 
hyperparameter configuration. Some hyperparameters are 
related to the network architecture (number of layers and 
units), while others to the training algorithm (learning rate, 
number of epochs, batch size). As previously mentioned, they 
were here initialized based on a literature review and 
experimentally adjusted using cross-validation in the training 
set. However, the performance could be further improved by 
tuning those hyperparameters further. Bayesian optimization 
appears to be a promising approach for this task. 

V. CONCLUSION 

The results obtained in this study highlighted the potential 
of feature learning approaches with CNNs for cuffless BP 
estimation exclusively based on a PPG sensor. Such an 
approach seems to benefit from the PPG second derivative to 
improve its generalization capability. Furthermore, the chosen 
calibration process of using a simple initial measure brings it 
one step closer to an actual application. The proposed model 
was trained and evaluated on a large dataset, which revealed 
its ability to track a wide range of BP variations. The results 
are promising and motivate further investigations.  
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