
  

  

Abstract— Myocardial ischemia, consisting in a reduction of 

blood flow to the heart, may cause sudden cardiac death by 

myocardial infarction or trigger serious abnormal rhythms. 

Thus, its timely identification is crucial. The Repeated 

Structuring and Learning Procedure (RS&LP), an innovative 

constructive algorithm able to dynamically create neural 

networks (NN) alternating structuring and learning phases, was 

previously found potentially useful for myocardial ischemia 

detection. However, performance of created NN depends on 

three parameters, the values of which need to be set a priori by 

the user: maximal number of layers (NL), maximal number of 

initializations (NI) and maximal number of confirmations (NC). 

A robustness analysis of RS&LP to varying values of NL, NI and 

NC is fundamental for clinical applications concerning 

myocardial ischemia detection but was never performed before; 

thus, it was the aim the present study. Thirteen serial ECG 

features were extracted by pairs of ECGs belonging to 84 cases 

(patients with induced myocardial ischemia) and 398 controls 

(patients with no myocardial ischemia) and used as inputs to 

learn (50% of population) and test (50% of population) NNs with 

varying values of NL (1,2,3,4,10), NI (50,250,500,1000,1500) and 

NC (2,5,10,20,50). Performance of obtained NNs was compared 

in terms of area under the curve (AUC) of the receiver operating 

characteristics. Overall, 13 NNs were considered; 12 (92%) were 

characterized by AUC≥80% and 4 (31%) by AUC≥85%. Thus, 

RS&LP proved to be robust when creating NNs for detecting of 

myocardial ischemia. 

 
Clinical Relevance— Availability of the Repeated Structuring 

& Learning Procedure to create reliable neural networks for 

timely detection of myocardial ischemia.  

I. INTRODUCTION 

Ischemic heart disease is one of the main causes of death 
worldwide [1]. It consists in a reduction of blood flow to the 
heart, with consequent reduction of myocardial oxygen supply 
and cardiac pumping ability. The most critical consequence of 
ischemia is sudden cardiac death by myocardial infarction or 
triggering of serious abnormal rhythms. Thus, timely clinical 
decisions are essential in case of myocardial ischemia. In a 
patient with symptoms, an accurate triage already in the 
ambulance may allow timely action [2] to preserve cardiac 
functions as much as possible [3].  

Clinically, diagnosis of ischemia and, in general of 
emerging pathologies, is usually performed by serial 
electrocardiography, which consists in the comparison of a 
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newly acquired electrocardiogram (ECG) with a previously 
acquired ECG from the same subject [4]. Through serial ECG 
comparison, clinicians try to identify ECG modifications 
caused by a changed clinical status and not to cardiac 
physiological adaptations [5] and slightly different electrode 
positioning [6]. The emergency context of myocardial 
ischemia diagnosis and the complexity of serial ECG clinical 
interpretation make availability of automatic diagnostic 
support tools desirable. Among these, the ones based on 
artificial intelligence and, specifically, on machine learning 
approaches seem to be particularly promising.  

Among the several studies for automatic detection of 
cardiac diseases [7–10], only a few of them deal with machine 
learning applications to serial electrocardiography [2, 11, 12]. 
Important but preliminary results were obtained by the new 
Repeated Structuring and Learning Procedure (RS&LP) [11], 
which was applied to create a neural networks (NN) able to 
detect myocardial ischemia on basis of thirteen serial ECG 
features provided as inputs. The most innovative aspects of 
RS&LP consist in its ability to dynamically create a NN by 
avoiding an initial definition of its structure and by performing 
an iterative learning, aspects that allowed RS&LP to reach 
better performance than NNs based on standard learning [11]. 
In its first use, RS&LP was implemented with the following 
three parameters a priori experimentally set by the user: 
maximal number of layers, maximal number of initializations 
and maximal number of confirmations. Since changes in the 
value of these parameters may influence characteristics of the 
created NN, and thus NN performance in detecting ischemic 
patients, a robustness analysis is necessary before RS&LP can 
be proposed for clinical use. Thus, aim of this study was to 
analyze RS&LP robustness to varying values of maximal 
number of layers, maximal number of initializations and 
maximal number of confirmations in order to identify the 
combination of parameters values that provides the best 
performance in terms of reliability in detecting patients 
affected by myocardial ischemia.  

II. MATERIALS AND METHODS 

A. Ischemia Database 

A dataset of serial ECGs from 482 patients, 84 of whom 
classified as cases (i.e., patients with induced ischemia) and 
398 as controls (i.e., patients without ischemia) by expert 
cardiologists. For each patient, a couple of standard 10-
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seconds 12-lead ECG was recorded at different time instances. 
The case patients, whose data belong to the STAFF III 
database [13], underwent balloon occlusions during elective 
percutaneous transluminal coronary angioplasty. The first 
ECG was recorded 3 minutes before the occlusion, in a stable 
resting condition; the second ECG was recorded 3 minutes 
after the occlusion, in condition of induced acute myocardial 
ischemia. The control patients, whose data belong to the digital 
ECG database of the Leiden University Medical Centre [14], 
were outpatients of the cardiology department. The first ECG 
and the second ECG were recorded during routine check-ups, 
about one year apart, in equal clinical statuses. The present 
retrospective study was undertaken in compliance with the 
ethical principles of Helsinki Declaration and approved by the 
Leiden University Medical Center Medical Ethics Committee.  

Serial ECG data of all patients were equally divided into 
learning dataset and testing dataset. The learning dataset was 
used to create NNs by using the RS&LP; the testing dataset 
was used to assess NNs performance in identifying ischemic 
patients. The learning dataset was further divided into training 
dataset (80% of the learning dataset) and validation dataset 
(20% of the learning dataset). Prevalence of cases and controls 
were maintained in all datasets. Serial ECG data division into 
learning (training and validation datasets) and testing datasets 
are reported in Table I. 

B. Feature Selection 

Each ECG was processed with the Leiden ECG Analysis 
and Decomposition Software [15] that converts the standard 
10-seconds 12-lead ECG into a vectorcardiogram, computes 
the coherently averaged beat and determines its QRS onset, 
QRS end and T-wave end. Automatically detected landmarks 
were visually confirmed and, if needed, manually corrected by 
two independent ECG analysts. Then, thirteen features were 
computed [11]: QRS duration (ms); QT interval (ms); QRS 
maximum amplitude (µV); T-wave maximum amplitude 
(µV); magnitude of QRS-integral vector (mV·ms); magnitude 
of T-wave integral vector (mV·ms); QRS complexity (%); T-
wave complexity (%); absolute value of QRS-T spatial angle 
(°) [12], magnitude of the ventricular gradient vector 
(mV·ms); heart rate (bpm); magnitude of the J-point vector 
(µV); and T-wave symmetry (%). These features cover the 
main aspects of cardiac electrical function; thus, if a change in 
the electrical heart function occurs, one or more features are 
expected to change accordingly. The thirteen features 
measured from the firstly acquired ECG were subtracted from 
the corresponding thirteen features of the secondly acquired 
ECG. These thirteen serial (i.e., differential) ECG features 
were used as inputs of the RS&LP. 

C. Repeated Structuring & Learning Procedure 

RS&LP is a constructive algorithm for automatic creation 
of supervised fully connected NNs [11]. Number of input and 
output neurons may vary with application. Briefly, RS&LP 
implements an iterative procedure including three phases: 
structuring, learning and confirmation. The procedure starts 
from an original NN, at the first iteration usually composed by 
a hidden layer with one neuron. During the structuring phase, 
the original NN is upgraded in order to get different candidate 
NNs; upgrading is obtained by adding a neuron in an existing 
hidden layer or in a new hidden layer. Candidate NNs must 
respect two structural rules: 1) number of layers cannot exceed 

the maximal number of layers (NL) a priori set by user; and 2) 
number of neurons in a layer cannot be larger than number of 
neurons in the previous layer. During the learning phase, only 
the newly added neuron (i.e., its weights and bias) is 
initialized. Initialization is accepted only if, after one only 
epoch, the new neuron provokes a decrement of the training 
error. If the performed initialization is not acceptable, the new 
neuron is re-initialized. Number of initializations of the new 
neuron cannot exceed the maximal number of initializations 
(NI) a priori set by the user. All candidate NNs with acceptable 
initialization of the new neuron are learnt. During the 
confirmation phase, validation errors of all learnt candidate 
NNs are compared with the validation error of the original NN. 
If the validation error of one or more candidate NNs is smaller 
than the validation error of the original NN, the candidate NN 
with the smallest validation error becomes the new original 
NN; if validation errors of all candidate NNs are larger than 
the validation error of the original NN, the original NN 
remains confirmed as such. Then, the procedure starts anew. 
RS&LP stops when at least one of the following stopping 
criteria occurs: there are no acceptable candidate NNs; the 
same original NN was confirmed for a number of times not 
superior to the maximal number of confirmations (NC) a priori 
set by the user; or the validation error of the original NN is 
equal to zero. When one of the stopping criteria occurs, the 
current original NN becomes the final NN, characterized by a 
specific architecture (ARC; i.e., number of neurons and 
number of layers, here represented through a vector in which 
the number of elements represents the number of layers, and 
the numerical value in each element represents the number of 
neurons in the corresponding layer). 

In the present study, RS&LP was fed with the thirteen 
serial ECG features and thus counted thirteen neurons in the 
input layer. In output it provided the probability of a patient 
being affected by myocardial ischemia, so that a single neuron 
in the output was considered. While creating NNs on the 
learning dataset, classes were weighted according with the 
inverse of their prevalence to compensate for the 
cases/controls disproportion. Considered neurons had weights 
and biases ranging between ±1 and a sigmoid activation 
function. Used optimization algorithm was the scaled-
conjugate-gradients algorithm [17] and the validation-based 
early stopping was used [18] to avoid overfitting.  

 

TABLE I.  SERIAL ECG DATA DIVISION INTO LEARNING (TRAINING 

AND VALIDATION DATASETS) AND TESTING DATASETS. 

 Learning Dataset (50%) 
Testing 
Dataset 
(50 %) 

Total 

 
Training 
Dataset 
(80 %) 

Validation 
Dataset 
(20 %) 

Total 

Cases 32 10 42 42 84 

Controls 161 38 199 199 398 

Total 193 48 241 241 482 
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D. Robustness Study 

RS&LP depends on the three parameters a priori set by 
user, i.e., NL, NI and NC. Since in the initial RS&LP 
implementation, NL, NI and NC were set at 3, 500 and 10, 
respectively [11], the final NN created using these parameters 
values was considered as the reference NN (NNREF) in this 
study (where for reference with do not intend optimal). 
RS&LP robustness to varying values these parameters was 
assessed by changing the value of one parameter at the time. 
Specifically, to evaluate RS&LP robustness to varying NL, 
NL was set equal to 1, 2, 4, and 10 while maintaining NI equal 
to 500 and NC equal to 10; created NN were indicated as NNL1, 
NNL2, NNL4 and NNL10, respectively. To evaluate RS&LP 
robustness to NI, NI was set equal to 50, 250, 1000 and 1500 
while maintaining NL equal to 3 and NC equal to 10; created 
NN were indicated as NNI50, NNI250, NNI1000 and NNI1500, 
respectively. Eventually, to evaluate RS&LP robustness to 
varying NC, NC was set equal to 2, 5, 20 and 50 while 
maintaining NL equal to 3 and NI equal to 500; created NN 
were indicated as NNC2, NNC5, NNC20 and NNC50, respectively. 
Thus, overall, twelve new final NNs were created and their 
performance were compared to that of NNREF. 

E. Statistics 

To avoid initialization dependency, RS&LP was applied 
100 times for each combination of parameters values, thus 
obtaining 100 potential final NNs. For each of them, the area 
under the curve (AUC) of the receiver operating characteristic 
(ROC) on the learning dataset was computed the potential final 
NN with the largest learning AUC became the final NN for 
that combination of parameters values. Performance of each 
final NN was quantified by computing the AUC and the 95% 
confidence intervals (CI) on the testing dataset. ROC curves 
were compared using the DeLong’s tests [19]. Statistical 
significance (P-value) was set at 0.05. 

III. RESULTS 

The results of the robustness analysis are reported in Table 
II. Different final NN architectures were obtained with 
different combination of parameters values. Maximum 
number of layers was 4, while number of neurons ranged from 
4 to 122. Overall, thirteen NNs were considered; of them, 12 
(92%) were characterized by AUC≥80% and 4 (31%) by 
AUC≥85%. The best performing NNs were NNI250 and NNC20, 
both characterized by AUC=86%.  

When varying NL, NNL1 was the least complex network (9 
neurons in 1 layer) whereas NNL4 was the most complex one 
(22 neurons in 4 layers). When varying NI, NI1000 was the least 
complex network (32 neurons in 3 layers) whereas NI250 was 
the most complex one (70 neurons in 3 layers). When varying 
NC, NC2 was the least complex network (4 neurons in 2 layers) 
whereas NC50 was the most complex one (122 neurons in 3 
layers). 

Figure 1 shows the testing ROC curves relating to final 
NNs for all combinations of parameters values. No ROC was 
found to be statistically different from the one relating to 
NNREF. When varying NL, all AUCs were higher than 81% 
(Figure 1.A), with NNL4 performing the best (AUC=85%). 
When varying NI, all AUCs were higher than 80% (Figure 
1.B), with NNI250 performing the best (AUC= 86%). 

Eventually, when varying NC, all AUCs were higher than 74% 
(Figure 1.C), with NNC20 performing the best (AUC= 86%). 

IV. DISCUSSION 

This study analyzed RS&LP robustness to varying values 
of the three parameters a-priori set by the user, that are NL, NI 
and NC, in order to identify the combination of these 
parameters values that provides the best performance when 
detecting patients affected by myocardial ischemia. Indeed, 
variations in parameters values lead to different final NNs 
which may perform differently. Results indicate that RS&LP 
is very robust. Indeed, despite being characterized by quite 
different architectures, performances of all NNs were 
generally similar (similar AUC, similar CI and no statistically 
different ROC curves; Table II, Figure 1).  

RS&LP automatically creates a NN without defining a 
priori its architecture. Nowadays, the a-priori definition of a 
NN architecture still requires several trials and computations 
since no standardized rules have been drawn up. Too simple 
architectures constituted by few neurons and/or layers may 
lead to underfitting; on the other hand, too complex 
architectures constituted by many neurons and/or layers may 
lead to overfitting. Thus, availability of new constructive 
procedures able to automatically determine the appropriate 
NN architecture is desirable. RS&LP determines the NN 
architecture by uniquely alternating structuring and learning: 
NN growing is encouraged by trying different NN candidates 
(avoiding underfitting) and simultaneously discouraged by 
imposing that the grown NN must perform better (avoiding 
overfitting). Since the NN can grow following different 
learning pathways, final NNs with different architectures but 
performing similarly are possible.  

TABLE II.   ARCHITECTURE AND PERFORMANCE ON THE TESTING 

DATASET OF FINAL NNS CREATED WITH DIFFERENT COMBINATIONS OF NL, 
NI AND NC VALUES. 

 NL NI NC ARC 
AUC 
(%) 

CI 
(%) 

P 

NNREF 3 500 10 [11 9 1] 83 75-91 - 

NNL1 1 500 10 [9] 81 72-89 0.73 

NNL2 2 500 10 [8 3] 81 73-89 0.75 

NNL4 4 500 10 [8 8 3 3] 85 77-92 0.69 

NNL10 10 500 10 [13 5] 83 75-91 0.99 

NNI50 3 50 10 [16 12 12] 81 73-89 0.76 

NNI250 3 250 10 [26 22 22] 86 79-94 0.52 

NNI1000 3 1000 10 [12 10 10] 80 72-89 0.71 

NNI1500 3 1500 10 [24 12 11] 85 77-93 0.67 

NNC2 3 500 2 [3 1] 74 65-83 0.16 

NNC5 3 500 5 [8 3 3] 82 74-90 0.86 

NNC20 3 500 20 [37 25 25] 86 79-94 0.54 

NNC50 3 500 50 [42 40 40] 84 76-92 0.80 
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Figure 1. Testing ROC curves relating to final NNs obtained using different combinations of parameters values. Specifically, panels A, B and C 

depict ROC curves obtained when varying NL, NI and NC, respectively; in all panels, the ROC curve relating to NNREF is depicted in red. 
 

When varying NL, one could expect that all available 
layers would be filled in the final NN; however, this did not 
happen for large values of NL (Table II). This finding indicates 
that, when applying RS&LP, structuring is strongly driven by 
learning. Once learning obtains good results, RS&LP stops 
even though more complex NN architectures are potentially 
reachable, avoiding overfitting. Thus, medium-high values of 
NL (i.e., NL≥3) are suggested to leave the procedure free to 
create NN architectures of appropriate complexity. When 
varying NI, one could expect that the higher the NI value, the 
higher the number of added neurons, and the more complex 
the NN architecture; however, this behavior was not observed 
(Table II). Thus, an intermediate value of NI (around 250) is 
suggested to limit computational efforts. Finally, when 
varying NC, NN obtained with medium-high values of NC 
tended to perform better (Table II), as expected. Thus, an 
intermediate value of NC (as 10 or 20) is suggested to avoid 
low performance and high computational efforts. 

In conclusion, RS&LP proved to be reliable when applied 
to detect myocardial ischemia and, thus, can be proposed as a 
clinical tool, also in emergency situations. Clinical 
applications require setting of default parameters values that, 
according to our results, could be NL=3, NI=250 and NC=10.  

V. CONCLUSION 

When applied to detect myocardial ischemia, RS&LP 

proved to be very robust procedure to varying values of NL, 

NI and NC parameters, which need to be set a priori by the 

user; suggested values are 3, 250 and 10, respectively.  

REFERENCES 

[1] J. Choudhary et al., “Clinical Implications of the ISCHEMIA Trial: 

Invasive vs Conservative Approach in Stable Coronary Disease,” Curr. 

Cardiol. Rep., vol. 23, no. 5, p. 43, May 2021. 

[2] C. C. Haar et al., “An initial exploration of subtraction 

electrocardiography to detect myocardial ischemia in the prehospital 

setting,” Ann. Noninvasive Electrocardiol., vol. 25, no. 3, May 2020. 

[3] K. Ng, S. R. Steinhubl, C. DeFilippi, S. Dey, and W. F. Stewart, “Early 

detection of heart failure using electronic health records,” Circ. 

Cardiovasc. Qual. Outcomes, vol. 9, no. 6, pp. 649–658, Nov. 2016. 

[4] W. R. Harlan, A. Graybiel, R. E. Mitchell, A. Oberman, and R. K. 

Osborne, “Serial electrocardiograms: Their reliability and prognastic 

validity during a 24-yr period,” J. Chronic Dis., vol. 20, no. 11–12, pp. 

853–867, Nov. 1967. 

[5] B. J. A. Schijvenaars, G. van Herpen, and J. A. Kors, “Intraindividual 

variability in electrocardiograms,” J. Electrocardiol., vol. 41, no. 3, pp. 

190–196, May 2008. 

[6] L. D. Ostrander, “Serial electrocardiographic findings in a prospective 

epidemiological study,” Circulation, vol. 34, no. 6, pp. 1069–1080, 

Dec. 1966. 

[7] D. Marinucci, A. Sbrollini, I. Marcantoni, M. Morettini, C. A. Swenne, 

and L. Burattini, “Artificial neural network for atrial fibrillation 

identification in portable devices,” Sensors, vol. 20, no. 12, p. 3570, 

Jun. 2020. 

[8] X. Wang et al., “Automatic diagnosis of ECG disease based on 

intelligent simulation modeling,” Biomed. Signal Process. Control., 

vol. 67, p. 102528, May 2021. 

[9] F. M. Dias, H. L. M. Monteiro, T. W. Cabral, R. Naji, M. Kuehni, and 

E. J. da S. Luz, “Arrhythmia classification from single-lead ECG 

signals using the inter-patient paradigm,” Comput. Methods Programs 

Biomed., vol. 202, p. 105948, Apr. 2021. 

[10] P. Li, Y. Hu, and Z.-P. Liu, “Prediction of cardiovascular diseases by 

integrating multi-modal features with machine learning methods,” 

Biomed. Signal Process. Control., vol. 66, p. 102474, Apr. 2021. 

[11] A. Sbrollini et al., “Serial electrocardiography to detect newly emerging 

or aggravating cardiac pathology: a deep-learning approach,” Biomed. 

Eng. Online, vol. 18, no. 1, p. 15, Dec. 2019. 

[12] A. Sbrollini et al., “Serial ECG analysis: absolute rather than signed 

changes in the spatial QRS-T angle should be used to detect emerging 

cardiac pathology,” in Computing in Cardiology, 2018, pp. 1-4. 

[13] S. G. Warren and G. S. Wagner, “The STAFF studies of the first 

5minutes of percutaneous coronary angioplasty balloon occlusion in 

man,” J. Electrocardiol., vol. 47, no. 4, pp. 402–407, Jul. 2014. 

[14] R. W. Treskes et al., “Performance of ST and ventricular gradient 

difference vectors in electrocardiographic detection of acute 

myocardial ischemia,” J. Electrocardiol., vol. 48, no. 4, pp. 498–504, 

Jul. 2015. 

[15] H. H. M. Draisma et al., “LEADS: an interactive research oriented 

ECG/VCG analysis system,” in Computers in Cardiology, 2005, pp. 

515–518. 

[16] G. King and L. Zeng, “Logistic Regression in Rare Events Data,” Polit. 

Anal., vol. 9, no. 2, pp. 137–163, Jan. 2001. 

[17] M. F. Møller, “A scaled conjugate gradient algorithm for fast 

supervised learning,” Neural Networks, vol. 6, no. 4, pp. 525–533, Jan. 

1993. 

[18] L. Prechelt, “Early stopping — but when?,” in Neural Networks: Tricks 

of the Trade. Lecture Notes in Computer Science, 2nd ed., G. Montavon, 

G. B. Orr, and K.-R. Müller, Ed. Berlin: Springer, 2012, pp. 53–67. 

[19] E. R. DeLong, D. M. DeLong, and D. L. Clarke-Pearson, “Comparing 

the areas under two or more correlated receiver operating characteristic 

curves: a nonparametric approach,” Biometrics, vol. 44, no. 3, p. 837, 

Sep. 1988. 

470


