
  

  

Abstract— Seizures represent one of the most challenging 

issues of the neonatal period’s neurological emergency. Due to 

the heterogeneity of etiologies and clinical characteristics, 

seizures recognition is tricky and time-consuming. Currently, 

the gold standard for seizure diagnosis is 

Electroencephalography (EEG), whose correct interpretation 

requires a highly specialized team. Thus, to speed up and 

facilitate the detection of ictal events, several EEG-based 

Neonatal Seizure Detectors (NSDs) have been proposed in the 

literature. Research is currently exploiting more simple and less 

invasive approaches, such as Electrocardiography (ECG). This 

work aims at developing an ECG-based NSD using a 

Generalized Linear Model with features extracted from Heart 

Rate Variability (HRV) measures as input. The method is 

validated on a public dataset of 52 subjects (33 with seizures and 

19 seizure-free). Achieved encouraging results show 69% 

Concatenated Area Under the ROC Curve (AUCcc) for the 

automatic detection of windows with seizure events, confirming 

that HRV features can be useful to catch the cardio-regulatory 

system alterations due to neonatal seizure events, particularly 

those related to Hypoxic-Ischaemic Encephalopathies. Thus, 

results suggest the use of ECG-based NSDs in clinical practice, 

especially when a timely diagnosis is needed and EEG 

technologies are not readily available. 

 
Clinical Relevance— An ECG-based Neonatal Seizure 

Detector could be a valid support to speed up the diagnosis of 

neonatal seizures, especially when EEG technologies for infants' 

neurological assessment are not readily available. 

I. INTRODUCTION 

In recent years, the interest in neonatal seizures has 
progressively grown. As stated by a recent ILAE's 
(International League Against Epilepsy) position paper [1], 
neonatal seizures are among the most common clinical signs 
of possible neurological insult for the newborn during the first 
hours of life. Several hypotheses were proposed to establish 
the possible etiologies of neonatal seizures. However, there is 
still no unanimous consensus for their characterization and 
classification in the complex mosaic of epileptic or 
neurological disorders [1]. Moreover, their detection and 
diagnosis is still challenging, especially in the context of 
Neonatal Intensive Care Units (NICUs), and requires highly 
specialized expert staff available twenty-four hours a day. To 
date, the accepted gold standard for the diagnosis of neonatal 
seizures is Electroencephalography (EEG) [2]. The timely 
detection of seizures is crucial due to their significant impact 
on the infant's neurodevelopment [3]. Depending on the 
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aetiology, they could be either a sign of undetected cerebral 
insults or systemic disorders [4]. 

Several EEG-based Neonatal Seizure Detectors (NSDs) 
were proposed in the literature [5, 6, 7]. Moreover, results 
suggest that Artificial Intelligence techniques could provide 
valid support to the clinical staff in the next future [8]. 
Recently, the possibility to develop NSDs without the use of 
EEG was evaluated [5]. In particular, ECG-based NSDs were 
proposed in the literature [9, 10]. The idea behind ECG-based 
NSDs is to use less invasive, more simple and readily available 
technologies than EEG-based NSDs. Indeed, neonatal seizures 
may induce direct and indirect alterations on the autonomic 
nervous systems, thus they could be better detected by ECG-
based NSDs [1, 2, 11, 12]. Unfortunately, the performance of 
these detectors is still too low to represent a valid alternative 
to EEG [5]. However, progresses in nonlinear HRV analysis 
in newborns and recent findings on neonatal seizures [11, 12, 
13, 14] open several ways to improve their performance. To 
this aim, in this work, we evaluated if nonlinear and linear 
HRV analysis might be a valid strategy to develop an ECG-
based NSD when its features are considered as input for a 
Generalized Linear Model (GLM [15]). Achieved encouraging 
results are validated through a public dataset made of 52 
newborns with and without seizures events collected at the 
Helsinki University Hospital [16].  

This paper is organized as follows: in Section II, the HRV 
analysis tools and the procedure to obtain the GLM model are 
presented. In Section III, the GLM model, statistical results 
and NSD's validation performances are shown. Section IV 
focuses on discussing our findings with existing literature and 
possible future developments. 

II. MATERIAL AND METHODS 

Data from a public dataset collected at Helsinki University 
Hospital [16] were used to implement and validate the 
proposed methods. As described in [16], three experts 
evaluated the dataset to identify the newborns with seizures 
and those without any ictal events. From the entire dataset of 
79 at-term newborns, we selected only the patients for which 
the experts gave unanimous consensus. Moreover, we 
discarded the recordings where ECG signals were not present 
or were highly corrupted by noise. After this selection process, 
our dataset was composed of 52 subjects: 33 with seizures and 
19 seizure-free. HRV features were extracted using the Kubios 
software version 2.2 [17]. Statistical analysis and the GLM 
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model validation were implemented under the MATLAB 
2020b computing environment [18]. To increase the Signal to 
Noise Ratio (SNR), we applied to ECG recordings a band-pass 
FIR filter in the bandwidth 0,05Hz – 45Hz. For the HRV 
analysis, for each recording, we defined non-overlapping 
sliding time windows lasting 4 minutes [11]. Artifacts were 
removed using a first-order detrending step and a "medium 
correction" (for more details, see [17]).  

According to [17, 19], the following statistical features 
have been computed: mean of RR intervals (mean_RR); 
standard deviation of RR intervals (std_RR); mean of HR 
(mean_HR); standard deviation of HRV (std_HRV); root 
mean square of subsequent RR interval differences (RMSSD); 
percentage of successive RR intervals that differ more than 
50ms (pNN50); HRV triangular index (HRV_tri_ind); 
baseline width of the RR interval histogram (TINN). 
Moreover, in the frequency domain, we computed the 
Autoregressive (AR) model of order 16 [17] for the spectrum 
estimation, and we extracted the peak, absolute power (power) 
and relative power (power_prc) of Very Low (VLF), Low (LF) 
and High Frequencies (HF) indicated here as AR_LF_power, 
AR_HF_power, AR_LF_power_prc etc., respectively. 
Furthermore, we also analyzed the ECG-derived respiration 
(EDR). As in [11], we adapted the frequency bandwidth of LF 
and HF to the neonatal range, that is 0.04Hz-0.3Hz for LF and 
0.3Hz-1.3Hz for HF.   

Furthermore, the following nonlinear features have been 
included: the Poincarè plot standard deviation along the line of 
identity (SD2) [20]; Approximate and Sample Entropy (ApEn, 
SampEn); Multiscale Entropy (MSE); Detrending short- and 
long-term Fluctuation Analysis (DFAα1, DFAα2) and 
Correlation Dimension (CorDimD2). For the Entropy features, 
the embedding dimension was set to 2, and for SE and MSE, 
the tolerance was set to 0.2. Moreover, for a consistent 
estimation of the MSE features, the scales were computed up 
to level 6 (from MSE1 to MSE6) [21]. We remark that in this 
fashion, SampEn and MSE1 result to be the same. Finally, we 
also computed the following Recurrence Quantification 
Analysis (RQA) features: Maximum Line Length (Lmax); 
Mean Line Length (Lmean); Recurrence Rate (REC); 
Determinism (DET) and Shannon Entropy (ShanEn) [22].  

We performed a Mann-Whitney Test (significance level 
α=0.05) between the medians of the windows of the seizure-
free patients and those with one or more seizure events. This 
test aimed at assessing the statistical significance of HRV 
measures to discriminate windows with seizures events from 
seizure-free windows. The relevant features found after Mann-
Whitney tests are shown in Table I. 

TABLE I.  SIGNIFICANT HRV FEATURES AFTER MANN-WHITNEY 

TEST (SIGNIFICANT DIFFERENCES IN MEDIANS WITH P-VALUE < 0.05). 

Feature Name p-value Feature Name p-value 

std_RR 0.03 MSE3 0.001 

std_HRV 0.03 MSE4 0.001 

RMSSD 0.01 MSE5 0.006 
HRV_tri_ind 0.004 MSE6 0.006 

TINN 0.02 CorDimD2 0.02 

AR_LF_power 0.01 RQA Lmean 0.009 
AR_LF_power_prc 0.004 RQA REC 0.04 

AR_HF_power 0.02 RQA ShanEn 0.02 

MSE2 0.03   

 

To implement the GLM model for the NSD, we performed 
a stepwise regression procedure [18]. Starting from a model 
with only the intercept term and considering the subset of 
significant features found with the Mann-Whitney test, we 
used a forward and backward stepwise regression to determine 
the final model. The criterion used to add or remove terms was 
the Deviance Criterion [15, 18]. Moreover, we trained the 
GLM model using the Binomial Distribution for the response 
variable and a Logit link function [23]. The GLM model was 
built using all the considered time windows, including the 
interictal time windows that were not used for the statistical 
test. In total, we used 1067 windows from the 52 patients, 284 
of which with seizure events. Before the stepwise procedure, 
we normalized the features by rescaling the data range in the 
interval [0,1], where 0 is the lowest value of the features across 
all windows and 1 is the highest value. Furthermore, we 
replaced missing values with the global medians of the 
features. The estimated coefficients and the statistical results 
concerning the GLM model are presented in Section III. To 
assess the model's performance in detecting windows with 
seizure events, from the model, we build the concatenated 
Area Under the ROC curve (AUCcc) [7]. Furthermore, we also 
defined a Leave-One-Subject-Out Validation (LOSO), 
iteratively removing each patient and retraining the GLM 
model using the same formula shown in (1). We applied the 
LOSO procedure to avoid an overestimation of the neonatal 
seizure detection task [24]. To compare our results with the 
existing literature, we defined the following patient-
independent performances: Accuracy (ACC), Sensitivity 
(SEN), Specificity (SPE) [9, 10]. Performances were obtained 
after the selection of the threshold parameter for the response 
variables. Results are presented in Section III. 

III. RESULTS 

The final model's formula obtained from the stepwise 
procedure is shown in equation 1 in compact symbolic form 
(i.e. showing only the interaction terms for RMSSD, MSE3 
and MSE5): 

 labels ~ 1+ARLFpower + RMSSD*MSE3 + RMSSD*MSE5 () 

Table II shows the statistical results related to the GLM 
model. Both the nonlinear entropy features MSE3 and MSE5 
and their interaction with RMSSD show a significant p-value 
(significance level α=0.05). Besides, we tested if the model 
significantly differs from a constant using a Deviance Test 
[18]. We obtained a χ2 statistic vs constant model: 96.6 and p-
value 1.3e-18. In Fig. 1, the partial dependence plots [25] of 
the predicted labels as a function of the predictor variables 
involved in the interaction terms (RMSSD, MSE3 and MSE5) 
are shown. Partial Dependence is defined as the relationships 
between predictor’s variables and predicted labels. 

TABLE II.  ESTIMATED COEFFICIENTS OF THE PROPOSED GLM MODEL. 
THE MODEL WAS BUILT USING 1067 WINDOWS FROM 33 PATIENTS WITH 

SEIZURE EVENTS AND 19 SEIZURE-FREE SUBJECTS. 

 Estimate SE tStat p-value 

Intercept -0.33107 0.25393 -1.3038 0.19 

RMSSD -0.63561 1.6911 -0.37585 0.70 
ARLF_power -162.77 87.707 -1.8558 0.06 

MSE3 -6.116 1.1778 -5.1928 2.07e-07 

MSE5 6.7515 1.4574 4.6324 3.61e-06 
RMSSD:MSE3 25.728 6.5232 3.9441 8.01e-05 

RMSSD:MSE5 -42.402 9.9384 -4.2664 1.98e-05 
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In Table III, the results of the GLM model as an ECG-
based NSD are shown. For patient-independent metrics ACC, 
SEN and SPE, we reported the threshold (TH) used to obtain 
these performances and their mean values with standard 
deviations obtained after the LOSO validation on the 52 
patients. The chosen TH value allowed a good compromise 
between SEN and SPE. The ROC curve related to the 
parameter AUCcc is shown in Fig. 2. In the experimental phase, 
we also tested GLM models without the stepwise procedure or 
artifact correction before HRV features extraction. As they 
gave poor performances, the results are not reported here. 

TABLE III.  PERFORMANCES OF THE PROPOSED GLM MODEL. 

Method  AUCcc  

(%) 

TH ACC  

(%) 

SEN  

(%) 

SPE  

(%) 

GLM  

(LOSO) 

69.69 0.35 68±27 43±37 77±28 

 

 

IV. DISCUSSION AND CONCLUSION 

This work aims at evaluating if HRV analysis and GLM 

models could help the development of an ECG-based NSD. 

The results reported in Table II show that the Multiscale 

Entropy contributes to characterize the seizure events with the 

model obtained. This possibility was not previously exploited 

[5, 9, 10]. The obtained performances confirm that EEG-based 

NSDs are still better than the ECG ones [5]. However, the 

AUCcc obtained by the GLM model can be considered a 

relevant improvement for the development of ECG-based 

detectors [5, 10]. Furthermore, as in [11], we found significant 

differences both for HF features, as reported in Section II, 

where the Mann-Whitney tests gave p-values lower than 0.05. 

Significant differences were also found for the LF features. 

Considering the interactions shown in Fig. 1, it is interesting 

to highlight the information provided by RMSSD values: 

extreme values of this measure (very close to 0 and 1 in 

normalized values) reflect an abnormal parasympathetic 

activity inside the windows with seizure events. At the same 

time, at different scales, the MSE analysis (Fig. 1) catches 

useful information about abnormal heart rate dynamics related 

to seizure events (e.g., reduced variability or transient 

decelerations) [26]. Considering Table I, the multiscale 

approach (from MSE2 to MSE6) allows findings statistical 

differences between the ictal and the seizure-free periods that 

could not be detected with a single scale approach (by ApEn 

or MSE1/SampEn). Furthermore, low values for entropy 

indexes during ictal events are similar to the EEG case [27].  

Our results confirm that neonatal seizures may alter the 

cardio-regulatory system, and an ECG-based NSD may detect 

these changes. It was already demonstrated [12] that HRV 

analysis can provide a reliable marker of brain damages in the 

case of Hypoxic-Ischaemic Encephalopathy (HIE), the most 

common etiology behind neonatal seizures [1]. However, this 

finding cannot be extended to all the newborns and seizures 

events considered. As shown in Table III, the high standard 

deviations obtained in LOSO validation mean that these 

alterations were not present for some patients, or the used 

HRV features cannot detect them. This is probably due to the 

possible different kinds of seizures' etiologies [1, 16]. 

 

 

Figure 1 - Above: Partial Dependence Plot of normalized RMSSD 

and MSE3 as a function of the predicted labels (represented by the 
colormap). Below: Partial Dependence Plot of normalized RMSSD 

and MSE5 as a function of the predicted labels (represented by the 

colormap). 

 

 

Figure 2 - ROC curve of the AUCcc value reported in TABLE III. 
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Moreover, it is worthwhile noting that HRV analysis may be 

unspecific for the neonatal seizure detection problem. For 

example, motor activity during ictal events could lead to 

changes in heart rate and its variability, although very often 

neonatal seizures are evident only trough ECG [1]. Therefore, 

further analysis is needed to confirm the use of only HRV 

measures in NSDs. Moreover, our NSD is based on windows 

lasting 4 minutes that cannot detect seizures' exact temporal 

occurrence as their average duration is often lower than the 

window used [16] (about 80-100 seconds on average for this 

dataset). In other words, the proposed NSD can detect the 

windows containing one or more seizure events but cannot 

establish their exact onset and offset. This is a trade-off due to 

the limitations of the HRV feature extraction method with 

shorter windows [19]. However, other ECG-based NSDs 

could be developed in the next future based on short-time 

windows (i.e. less than 30-60 seconds). Our analysis 

concerned a total of 52 patients that, to the best of our 

knowledge, represent the largest validation dataset for an 

ECG-based NSD and the first one performed on this public 

dataset. 

The proposed approach represents a valid support for the 

clinical decision process to detect newborns' ictal periods, 

capable of highlighting only the periods with seizures and thus 

reducing the number of recording hours to be inspected by the 

physician. In conclusion, considering the low invasiveness, 

low cost, and easier usability of ECG sensors with respect to 

EEG ones, our results suggest a possible integration of these 

systems in NICUs or any situation where EEG technologies 

are not easily and timely available. 
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