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Abstract— In clinical examination, event-related potentials
(ERPs) are estimated by averaging across multiple responses,
which suppresses background EEG. However, acquiring the
number of responses needed for this process is time consuming.
We therefore propose a method for shortening the measurement
time using weighted-average processing based on the output of
deep learning. Using P300 as a representative component, here
we focused on the shape of the ERP and evaluated whether our
method emphasizes the P300 peak amplitude more than con-
ventional averaging, while still maintaining the waveform shape
and the P300 peak latency. Thus, using either CNN or EEGNet,
the correlation coefficient reflecting the waveform shape, the
peak P300 amplitude, and the peak latency were evaluated and
compared with the same factors obtained from conventional
waveform averaging. Additionally, the degree of background
EEG suppression provided by our method was evaluated using
the root mean square of the pre-stimulation waveform, and
the number of fewer responses required for averaging (i.e., the
reduction in measurement time) was calculated.

The results showed that compared with P300 values obtained
through conventional averaging, our method allowed for the
same shape and response latency, but with a higher amplitude,
while requiring a smaller number of responses. Our method
showed that by using EEGNet, measurement time could be
reduced by 13.7%. This corresponds to approximately a 40-
second reduction for every 5 minutes of measurement time.

I. INTRODUCTION

ERPs are used in both clinical and research settings,
especially in the fields of bioengineering, psychology and
neuroscience. Furthermore, in recent years, it has been
widely used in the field of brain-computer interface (BCI).
ERPs are electrical potentials that occur transiently with
respect to events that occur during cognitive processing. P300
is a positive potential that occurs approximately 300 ms after
the presentation of sensory stimuli, and it is considered to
be involved in human cognition and judgment.

Auditory oddball tasks are widely used in clinical exami-
nations. In this type of task, two different tones are randomly
presented such that one appears frequently and the other
infrequently. Participants are instructed to press a button
upon hearing the infrequent (oddball) tone. In addition to
superimposing spontaneous EEGs on the ERP, ERPs are
observed as waveforms mixed with artifacts such signals that
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originate from eye movements, not brain activity. Generally,
ERPs are estimated by suppressing spontaneous EEG and
artifacts, which is accomplished by averaging a large num-
ber of responses for target/non-target stimuli. (A stimulus
required to perform a task is called a target stimulus, and
the other stimulus is called non-target stimulus.) However,
as the number of responses increases, the amount of time
required to obtain the responses becomes problematical.
Therefore, numerous methods for estimating or detecting
ERPs from a single response and methods for preprocessing
before averaging have been proposed. The exact ERP within
a single-response waveform is unknown, and the estimation
is difficult because it changes from moment to moment
depending on the physical and mental state of the person,
such as motivation and fatigue. The purpose of this study
was not to estimate ERPs from single stimuli, but to obtain a
waveform similar to the waveform obtained by conventional
averaging in a shorter amount of time. If the measurement
time can be shortened for clinical diagnoses, the physical and
mental burden on the patient might be reduced. Because the
appearance of ERPs fluctuates across responses, a calculation
method is required in which responses containing clearly
identifiable ERPs make larger contributions to the averaging.
This type of weighting method will essentially exclude
responses from the average if ERPs do not appear.

Regarding ERP averaging methods, Leonowicz et al.
demonstrated robust averaging using a trimmed estimator
that suppressed the effects of outliers[1]. This method assigns
a small weight to extreme values located at both ends of the
ordered data. Kotowsky et al. proposed robust weighted aver-
aging based on criterion-function minimization for extracting
ERPs[2]. This kind of correlation-based weighting serves to
reduce the weight of corrupted responses.

In weighted averaging, obtaining the optimum weight is
difficult. Therefore, we used deep learning to determine
how reliable each response should be, and we added this
information to the averaging process. In this study, we used
EEGNet as one of the networks for deep learning. EEGNet
is a network widely used for classification and detection in
BCI, and is often used for comparison with other methods in
performance evaluation[3], [4]. Recent reports have shown
good results in the detection and classification of mortor
imagery[5], [6]. Because the average waveform weighted by
this reliability has a higher signal to noise ratio (the ratio of
the ERP amplitude portion of the signal to components other
than the ERP) than that obtained by conventional averaging,
the measurement time can be reduced.

In Section II of the current paper, we describe how to
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obtain the weight for weighted averaging using deep learning
and how to estimate the measurement time. In Section III,
we compare two types of weighted averaging methods with
conventional averaging. In Section IV, we discuss how the
proposed methods shorten the measurement time, and finally
state the conclusion of this study.

II. METHOD

A. EEG measurement

EEGs were recorded using a Nihon Koden polygraph
(EEG-1100) with a 0.3-s time constant, a 60-Hz high-cut
filter, and a 97.5-nV quantization level. We obtained EEG
signals at a sampling frequency of 200 Hz from 19 elec-
trodes placed according to the international 10/20 system.
Monopolar derivation was obtained from bilateral reference
electrodes attached to the corresponding earlobes. EEG
measurement took place at Hotokukai Utsunomiya Hospital
after obtaining informed consent from the participants and
approval from the hospital’s ethics committee. Fifty healthy
individuals participated in the study.

We used the oddball paradigm as an experimental de-
sign to elicit the ERP. Two types of auditory stimuli were
presented: a target stimulus and a non-target stimulus. Par-
ticipants were instructed to push a button when they heard
the target stimulus. Responses for 30 target stimuli (2-kHz
tone bursts) and 120 non-target stimuli (1-kHz tone bursts)
were obtained for each participant. The average interval
between tones was 2 s and the total measurement time
was approximately 5 min. This trial was repeated twice per
person. Therefore, the number of responses obtained in this
study was approximately 3,000 for target stimuli and 12,000
for non-target stimuli.

B. ERP estimation by weighted averaging

Data recorded from 100 ms before stimulus onset to 1,000
ms after the onset were analyzed. The ground zero µV was
defined as the average during the pre-stimulus epoch (100
ms before stimulus onset). We used two kinds of neural
network models: convolutional neural network (CNN) and
EEGNet[7], as shown in Fig.1. The CNN network shown in
Fig.1(a) has a structure in which convolution and pooling
are repeated twice for the input data, and then a fully
connected network is connected. Input data to the network
were a potential matrix of 19 electrodes × 125 sample points,
which was constructed after down-sampling the 1-s EEG
data measured at a sampling frequency of 1,000 Hz to 125
Hz. The EEGNet network shown in Fig.1(b) has a structure
suitable for learning an EEG signal, with filtering in both the
spatial axis direction and then the time axis direction. The
input data and output elements are the same as for CNN. Data
from 32 of the 50 participants (64%) were used as learning
data, data from 8 (16%) were used as validation data, and
data from the remaining 10 (20%) were used as test data. We
confirmed that the participants correctly performed the task
for all the EEG responses, included in the training data. Here,
learning was performed by labeling responses to the target
stimulus as 1 and those to the nontarget stimulus as 0. The

training data and test data were divided such that responses
from the same participant were not included in both training
and test datasets. Because EEGs have very small electrical
potentials, learning does not proceed well if these values are
input without preprocessing. Therefore, before learning, we
standardized the data such that the mean potential was 0 and
the variance was 1. To compare the learning results of the
CNN and EEGNet networks, we used the same parameters
as much as possible. The input size was 19 × 125, the batch
size was 64, and the number of epochs was set to a maximum
of 500, while preventing overfitting by early stopping.

We compared the conventionally averaged waveform with
the waveform obtained through weighted averaging up to n-
th target response using the output from deep learning as a
weight, yn(t) using the equation,

yn(t) =

∑n
i=1 ωisi(t)∑n

i=1 ωi
(1)

, where the i-th response and weight are si(t) and ωi,
respectively.

Because averaging is generally performed on approxi-
mately 30 target stimuli in clinical examinations, we used 30
responses to generate averaged waveforms. In the equations,
x30(t) is the averaged waveform from 30 responses by
conventional averaging. The following three indices were
calculated for each participant and used to compare our
weighted-averaging methods with conventional averaging.
(a) Correlation coefficient

This index evaluates similarity of shape between two
waveforms.

CCn =

∑
∀t∈T x30(t)yn(t)√∑

∀t∈T x30(t)
2
√∑

∀t∈T yn(t)
2

(2)

Here, T represents the time during which all sample
points in the analysis were obtained.

(b) P300 peak amplitude
P300 peak amplitude is an important index for clinical
examinations. We therefore defined the peak-amplitude
ratio between two waveforms as,

An =
Ayn

Ax30

× 100 (%) (3)

, where Ax30 and Ayn are the maximum amplitudes for
averaged waveforms based on conventional and weighted
averaging, respectively.

(c) P300 peak latency
P300 peak latency is also important, and we defined the
peak-latency ratio between two waveforms as,

Ln =
Lyn

Lx30

× 100 (%) (4)

Here, Lx30 and Lyn are the maximum latencies for
averaged waveforms based on conventional and weighted
averaging, respectively.
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(a) CNN

(b) EEGNet

Fig. 1. Structures for the CNN and EEGNet networks.

C. Estimating the shortening of measurement time
Assuming that the electrical potential distribution at an

arbitrary time follows a Gaussian distribution with a mean
of zero, it becomes 0µV by averaging an infinite number of
responses. Because ERPs are evoked by a sensory stimulus,
it cannot exist during the pre-stimulation period. Here, when
the set of all sample points in the 100-ms pre-stimulus period
is T ′ and the number of sample points included in the period
is Ns, the root mean square (RMS) of x(t) can be calculated
by the following equation.

RMS =
1

Ns

∑
∀t∈T ′

x(t)
2 (5)

The closer this value is to 0, the more background EEG
is suppressed. We estimated the number of trials required by
the weighted-averaging method to obtain an RMS equivalent
to that generated by conventional averaging. The difference
between this value and the conventional value (30), gives us
the number of responses that can be reduced by weighted
averaging. With this result, we can estimate how much time
can be saved.

III. RESULTS

Figure 2 shows the relationship between the number of
responses that each averaging method uses and the corre-
lation coefficient between waveforms. When the number of
responses was 30, the correlation coefficient was 0.977 for
CNN and 0.990 for EEGNet. The result for the P300 peak-
amplitude ratio is shown in Fig.3. It ratio was 111.4% for
CNN and 111.1% for EEGNet. Similarly, the P300 peak-
latency ratio was 102.2% for CNN and 98.4% for EEGNet
(Fig.4). Here, the result for conventional averaging can be
obtained by replacing yn with xn in equations (2) to (4).

Figure 5 shows the RMS during the 100-ms period before
stimulus onset. The results indicate that the degree of back-
ground EEG-noise suppression using conventional averaging
(30 responses) was equivalent to the amount of suppression
obtained using CNN weighted averaging with 27.5 responses,
and EEGNet weighted averaging using 25.9 responses. Here,
these values were obtained by linear interpolation. Finally,
Fig.6 shows waveforms obtained by conventional averaging

using 30 responses and those obtained using weighted aver-
aging and a reduced number of responses. A statistical sig-
nificance test was performed between the weighted average
method and the conventional method in terms of correlation
coefficient, peak amplitude, and peak latency. Here, paired
t-test was performed on three indexes obtained from the
averaged waveform of 26 responses. As a result, a significant
difference (p < 0.05) was observed in the peak amplitude
in both EEGNet and CNN, but no significant difference was
observed in the correlation coefficient and the peak latency.
The results confirmed that even if the number of responses
is reduced, the waveform shape is not significantly affected.
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Fig. 2. Correlation coefficients for the averaged waveform obtained from
30 responses.
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Fig. 3. Peak-amplitude ratio for the averaged waveform obtained from 30
responses.
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Fig. 4. Peak-latency ratio for the average waveform obtained from 30
responses.
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Fig. 5. RMS during the pre-stimulation period.
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Fig. 6. ERP waveform estimated by conventional and weighted averaging.

IV. DISCUSSIONS

Regarding the correlation coefficient, although EEGNet
exhibited a slightly higher value than CNN, the values were
similar and indicate that the waveform shape is close to
that generated by conventional averaging. For the maximum
P300-amplitude ratio, both CNN and EEGNet exceeded
100%, indicating a larger value than that obtained from
30 responses averaged by conventional averaging. Weighted
averaging resulted in larger amplitudes because it assigned
large weights to the responses in which the appearance

of P300 was clear and easily distinguishable, and small
weights to the responses in which it was not. As for the
peak latency, both CNN and EEGNet produced values that
were close to 100% of the 30 conventionally averaged
waveform responses. However, the latencies provided by
EEGNet remained more stable with respect to the number
of responses than did those obtained via the CNN network.

Thus, weighted averaging using the output of deep learn-
ing increases P300 peak amplitude while requiring a smaller
number of responses, but it does not significantly affect
the shape or latency of the ERP, relative to that obtained
via conventional averaging. From the RMS results, we can
expect that measurement time will be shortened by 8.4%
((30 – 27.5) / 30) for CNN and 13.7% ((30 – 25.9) /
30) for EEGNet. This means that in general, EEGNet can
save approximately 41.1 seconds for every 5 minutes of
conventional measurement time.

V. CONCLUSIONS

In this study, we attempted to reduce the need to collect
enough data for accurate auditory ERP measurement. Our
new method uses weighted averaging based on the output of
deep learning. We showed that the time can be reduced by
13.7% using our method with EEGNet. Here, we applied this
method to data from healthy participants, but in the future,
we would like to examine whether this method can be applied
to patient data as well and also compare this method with
other averaging methods. Moreover, we would like to build
an online system that can terminate the measurement as soon
as the ERP that can be used for diagnosis is obtained during
the measurement.
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