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Abstract— As an important element in the human-machine
interaction, the electroencephalogram (EEG)-based emotion
recognition has achieved significant progress. However, one ob-
stacle to practicality lies in the variability between subjects and
sessions. Although several studies have adopted domain adap-
tation (DA) approaches to tackle this problem, most of them
treat multiple data from different subjects and different sessions
together as a single source for transfer. Since different EEG data
have different marginal distributions, these approaches fail to
satisfy the assumption of DA that the source has a certain
marginal distribution. We therefore propose the multi-source
EEG-based emotion recognition network (MEERNet), which
takes both domain-invariant and domain-specific features into
consideration. Firstly we assume that different EEG data share
the same low-level features, and then we construct multiple
branches corresponding to multiple sources to extract domain-
specific features, and then DA is conducted between the target
and each source. Finally, the inference is made by multiple
branches. We evaluate our method on SEED and SEED-IV for
recognizing three and four emotions, respectively. Experimental
results show that the MEERNet outperforms the single-source
methods in cross-session and cross-subject transfer scenarios
with an accuracy of 86.7% and 67.1% on average, respectively.

I. INTRODUCTION

Emotion as physiological information, which differs from
logical intelligence, is now widely used in various aspects
of daily human communications, such as negotiation. In
human-computer interaction (HCI), emotion plays a crucial
role in many studies, especially in health research, where
researchers have long found a substantial association be-
tween various mental diseases and emotions [1]. Thus, most
research focuses on identifying and analyzing the neural
signals from the brain in specific ways. Brain-computer
interfaces (BCIs) act as a bridge between the brain and the
computer, and allow the users to access the brain signals
directly from the computer. Among them, invasive BCIs are
expensive and require surgery to obtain higher accuracy, but
are too costly and dangerous. Non-invasive BCIs such as
electroencephalogram (EEG), on the other hand, are safer
and with moderate accuracy, and are therefore widely used
for brain signal acquisition [2]. Besides, many studies have
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demonstrated that EEG improves emotion recognition, motor
imagery, and event-related potentials [3], [4].

Also, it is challenging to get a model that is common
to different subjects and sessions in EEG-based emotion
recognition scenarios (i.e. the data collected from the same
subject at the same time can be very biased). To tackle
this, transfer learning is widely used in research works in
this scenario. Transfer learning maximizes the information
learned from the source domain EEG data and then applies
it to new EEG data, and can significantly reduce the number
of labels required in the target domain [5]. In recent years,
there has been many research works for EEG-based emotion
recognition, Zheng et al. [13] applies TCA (Transfer Com-
ponent Analysis) [6] to the cross-subject transfer scenario.
To tackle the marginal and conditional distribution problem.
Li et al. proposes a Multi-source Style Transfer Mapping
(MS-STM) [12] framework for cross-subject multi-source
scenario. They take a few labeled training data to learn
multiple STMs, which are then being used to map the target
distribution to the distributions of the sources. Many works
also apply deep learning techniques to improve the emotion
recognition. Li et al. [14] adopts DAN (Deep Adaptation
Network) [8] for cross-subject emotion recognition. Zheng
et al. [15] extends the SEED dataset to the SEED-IV, which
involves four emotions (fear, sad, happy, and neutral). They
also propose EmotionMeter, which is a combination of two
modalities of eye movements and EEG waves. With the
attention concept, Fahimi et al. [16] develops an end-to-end
deep CNN for cross-subject attention classification with EEG
time-series data. To increase the online transfer performance,
Li et al. [20] propose FOIT (fast online instance transfer) to
avoid cost of iterative methods, thus improves the practicality
of the algorithm.

However, with the enhancement of the accuracy of EEG-
based emotion recognition, they do not take into account that
different source data have different marginal distributions
but simply concatenating them. This action will destroy the
independence between the data, which will also negatively
affect the model.

In this paper, inspired by Zhu et al. [11], we present
a multi-source EEG-based emotion recognition network
(MEERNet) for EEG-based emotion recognition in the case
of multiple source domains, which takes into account the
simultaneous transfer of multiple source domains and avoids
simply concatenating them, which may disrupt the marginal
distributions among EEG data. We also conducted exper-
iments across subjects and sessions on two datasets, and
the experimental results show that our proposed MEERNet
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outperforms other works on two datasets.

II. METHOD

We list the symbols and their definition in Table I for
simplicity of demonstration.

TABLE I
NOTATION TABLE

symbol definition

X Instance set (matrix)
Y Label set (matrix)
S Source domain
T Target domain
N number of source domains
Q Common feature
R Domain-specific feature
Ŷ Predicted label
φ,Φ Mapping function
H Reproducing kernel Hilbert space

CFE Common feature extractor
DSFE Domain-specific feature extractor
DSC Domain-specific classifier
x Feature vector
y Label vector
q Feature vector after CFE
r Feature vector after DSFE
ŷ Predicted label vector

Given a set of pre-existing EEG data and newly collected
EEG data, our goal is to learn a model φ that is trained on
these multiple source domain data using transfer learning,
and thus has a better prediction on the newly collected data
than simply combining the existed data into one source do-
main. The architecture of the proposed method is illustrated
in Fig. 1.

As shown in the figure, the input to the MEERNet are
N source domain data {(XS

i ,Y
S
i )}Ni=1 and a target domain

data {XT }, and then these data are fed into a common fea-
ture extractor module to get the domain-invariance features
{QS

i }Ni=1 and {QT }. Then for each domain-specific feature
extractor, extracted common features {QS

i }Ni=1 will be fed
into the network with {QT } and get their domain-specific
features: {RS

i }Ni=1 and {RT
i }Ni=1, and on top of that, the

MMD value is calculated, which is a measure of the distance
of the current source and target domain. Next, the target
domain features {RT

i }Ni=1 and all the source domain features
{RS

i }Ni=1 extracted from the last step will get to the domain-
specific classifiers to get the corresponding classification
predictions: {Ŷ

T
} and {Ŷ

S

i }Ni=1, then the results of the
source domain are taken to calculate the classification loss.
In the end, the average of these target-domain predictions is
taken as the output of the model. Details of these modules
are given below.

Common Feature Extractor in the MEERNet is used
to map the source and target domain data from the original
feature spaces to a common sharing latent space, and then
common representations of all domains are extracted. This
module can help to extract some low-level domain-invariant
features.

Domain-specific Feature Extractor follows the Common
Feature Extractor (CFE). After obtaining the features of
all domains, we set up N single fully connected layers to
correspond to N source domains. For each pair of source and
target domains, we map the data to a unique latent space
via the corresponding Domain-specific Feature Extractor
(DSFE), respectively, and then obtain the corresponding
domain-specific features. To apply transfer learning and
bring the two domains close in the latent space, we choose
the MMD [7] to estimate the distance between these two
domains. MMD is widely used in the transfer learning and
can be formulated in (1). In the process of training, MMD
loss is decreased to narrow the source domain and the
target domain in the feature space, which helps make better
predictions for the target domain. This module aims to learn
multiple domain-specific features.

MMD(XS , XT ) =

∥∥∥∥∥∥ 1

NS

NS∑
i=1

Φ
(
xS
i

)
− 1

NT

NT∑
j=1

Φ
(
xT
j

)∥∥∥∥∥∥
2

H
(1)

Algorithm 1 Overview of MEERNet
Input:

Iteration T , source domain data {(XS
i ,Y

S
i )}Ni=1 and

target domain data {XT }
1: for t = 1,..., T do
2: Take m samples {xSi

j , y
Si
j }mj=1from source domains

and {xTj }mj=1 from target domain.
3: {qSi

j }mj=1, {qT } ← CFE({xSi
j , y

Si
j }mj=1, {xTj }mj=1)

4: {rSi
j }mj=1, {rTj }mj=1 ← DSFE({qSi

j }mj=1, {qT })
5: Lmmd ← (1)← DSFE
6: {ŷSi

j }mj=1, {ŷTj }mj=1,← DSC({rSi
j }mj=1, {rTj }mj=1)

7: Lcls ← (2)← DSC
8: Update model by minimizing the total loss
9: end for

10: return {Ŷ T };
Output:

Prediction of target domain data, {Ŷ T };

Domain-specific Classifier uses the features extracted
from the DSFE to predict. In Domain-specific Classifier
(DSC), there are N single softmax classifiers that correspond
to each source domain. The final output of the DSC is the
average of N classifiers. For each classifier training, we
choose cross-entropy to estimate the classification loss using
cross-entropy, as shown in (2). The average of the predictions
of the N classifiers is taken as the final result.

Lcls =

N∑
i=1

Ex∼XS
J
(
ŶS

i ,Y
S
i

)
(2)

In summary, MEERNet accepts N source domain EEG
data and one target domain EEG data, and then includes a
common feature extractor to get N source domain features
and one target domain feature. Next, N domain-specific
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Fig. 1. The architecture of our proposed method. Our network consists of common feature extractor, domain-specific feature extractor, and domain-specific
classifier. The model receives multiple source domains and leverages their knowledge to transfer to the target domain.

feature extractors are used to pairwise compute the MMD
loss of individual source with the target domain and extract
their domain-specific features. Finally, a domain-specific
classifier is used to do the classification task, which also
calculates the classification loss of the N classifiers using
the features after DSFE of the N source domain EEG data.

L = Lcls + λLmmd (3)

The training is based on the (3) and following the al-
gorithm as shown in Algorithm. 1. For the three losses,
minimizing MMD loss can get domain-invariant features for
each pair of the source, and target domains; minimizing
classification loss will bring more accurate classifiers for
predicting the source domain data.

III. EXPERIMENTS
We perform experiments in the task of classification in

emotion recognition on two datasets, and also experiment
with different model settings. The Institution’s Ethical Re-
view Board approved all experimental procedures involving
human subjects.

A. Settings

Datasets. We evaluate our method on two EEG-based
emotion recognition datasets: SEED [17], [18], SEED-IV
[15]. The raw data are gathered with an ESI NeuroScan
system with 62-channel, and are sampled to 200 Hz, then
a band-pass filter between 1 to 75 Hz is used for pro-
cessing data. For both datasets, since they are set up with
three sessions, each includes 15 subjects, we partitioned the
datasets according to two different transfer scenarios (i.e.,
cross-subject and cross-session transfer). Specifically, for the
cross-session transfer, we take the first 14 subjects in each
session as the source domain and take the remaining one
as the target; for the cross-session transfer, we take the first
and second sessions of each subject as the source domain
and transfer them to the third session. We do not select the
raw data here, but rather the extracted Differential Entropy
(DE) features as the data to be used with its ability to

distinguish patterns from different bands [19]. For both data
sets individually, they are in the form of channel x trial
x band, we merge the channel and band here as a single
sample, which ended up in the form of trial x sample (310
dimensions), and then concatenate all the trials together (15
trials for SEED, 24 trials for SEED-IV). In addition, we
evaluate various normalization methods (i.e., normalization
of channel dimension, normalization of sample dimension,
and global normalization) and finally choose the channel
dimension for better results .

Implementation Details. As mentioned in the Section.
III, there are many details in the three modules of the MEER-
Net. First, for the Common Feature Extractor (CFE), we
choose 3-layer MLP for simplicity which reduces dimensions
from 310-D to 64-D. Every linear layer is followed by a 1-D
BatchNorm layer and a LeakyReLU layer. There is a single
linear layer in both domain-specific feature extractor (DSFE)
and domain-specific classifier (DSC), which reduces 64-D to
32-D and 32-D to the corresponding number of categories,
respectively. In DSFE, a 1-D BatchNorm and a LeakyReLU
are followed after the linear layer, while in DSC, there is
only a linear layer. The whole network is trained using the
Adam optimizer with an initial learning rate of 0.01, and
train for 10k iterations, we also test 20k, 15k and 5k, the
epoch of 10k has the best performance. The batch size is 32,
which means we take 32 samples for each domain in every
epoch. For the loss, we choose MMD as the metric of the
distance between the source and target domain in the feature
space.

B. Results

Table II shows the results of MEERNet and comparison
methods [9], [8], [10](we customize these methods with
the same settings as MEERNet has) on the SEED and
SEED-IV, all the hyper-parameters of selected methods are
the same, the standard deviations and average accuracy
are calculated by averaging over all 15 participants in a
leave-one-out cross-validation. The results indicate that our
method largely outperforms the comparison methods. In the
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TABLE II
COMPARISON RESULTS ON SEED AND SEED-IV

Dataset Method Cross-session Cross-subject Average

SEED

DDC 85.0 ±10.5 80.5 ±3.2 82.8 ±6.9
DAN 81.8 ±9.9 83.5 ±5.9 82.7 ±7.9
DCORAL 84.0 ±10.8 85.4 ±5.5 84.7 ±8.2

w/o MMD 81.5 ±14.3 67.7 ±17.7 74.6 ±16.0
MEERNet 86.2 ±5.8 87.1 ±2.0 86.7 ±3.9

SEED-IV

DDC 68.8 ±16.6 54.3 ±4.2 61.6 ±10.4
DAN 60.2 ±10.2 69.8 ±4.2 65.0 ±7.2
DCORAL 65.1 ±13.2 67.1 ±2.5 66.1 ±7.9

w/o MMD 65.6 ±18.5 62.1 ±13.2 58.9 ±15.9
MEERNet 72.1 ±14.1 71.0 ±12.1 67.1 ±16.4

SEED dataset, our method outperforms other methods in all
transfer scenarios with at least ~2% improvement, while in
the SEED-IV dataset, although our method still outperforms
the other comparisons from the average perspective with at
least ~1% improvement, there is a significant drop and high
variance in the cross-subject transfer. To understand the effect
of the modules in MEERNet, we remove MMD loss and
evaluate the performance of the ablated model, the results
illustrate that without MMD loss, there is a substantial drop
in the performance of the model. Fig. 2 shows the confusion
matrices of predictions made by our proposed method on
SEED and SEED-IV. From (a) we can see that our method
can classify positive emotion well, and (b) shows that our
approach is more difficult to classify the two emotions of
fear and sad because they are relatively similar.

(a) (b)

Fig. 2. The confusion matrices of predictions on SEED and SEED-IV.
Only the results of cross-subject scenario are plotted. Each value in one
square stands for the number of samples. (a)SEED, (b)SEED-IV.

IV. CONCLUSIONS

We have presented MEERNet that brings domain-invariant
features and domain-specific features into consideration in
the multiple source transfer learning for the EEG-based
emotion recognition in aBCIs. In detail, different from others,
we set up multiple branches in the model to correspond
to multiple source domains, and use MMD loss to draw
the distance between the source and target domains closer.
The experimental results in two emotion analysis datasets
have shown that our method outperforms other methods in
accuracy. We believe that our proposed approach has help for
the application of aBCIs and opens a more effective way of

performing transfer learning for EEG-based emotion analysis
in the multiple sources scenarios.
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