
  

 

Abstract—Metabolic connectivity is conventionally calculated 

in terms of correlation of static positron emission tomography 

(PET) measurements across subjects. There is increasing 

interest in deriving metabolic connectivity at the single-subject 

level from dynamic PET data, in a similar way to functional 

magnetic resonance imaging. However, the strong 

multicollinearity among region-wise PET time-activity curves 

(TACs), their non-Gaussian distribution, and the choice of the 

best strategy for TAC standardization before metabolic 

connectivity estimation, are non-trivial methodological issues to 

be tackled. 

In this work we test four different approaches to estimate 

sparse inverse covariance matrices, as well as three similarity-

based methods to derive adjacency matrices. These approaches, 

combined with three different TAC standardization strategies, 

are employed to quantify metabolic connectivity from dynamic 

[18F]fluorodeoxyglucose ([18F]FDG) PET data in four healthy 

subjects.  

I. INTRODUCTION 

In the neuroimaging community, there is interest in 

developing methods to estimate metabolic connectivity (MC) 

from [18F]fluorodeoxyglucose ([18F]FDG) positron emission 

tomography (PET). Instead of exploiting the temporal 

information of dynamic PET, however, most of the studies 

have used conventional static measures to derive group-level 

MC as the covariance of metabolic information across 

subjects [1][2]. This is in contrast with other imaging 

modalities, such as functional magnetic resonance imaging 

(fMRI), where functional connectivity (FC) matrices are built 

at the single-subject level from zero-lag temporal correlations 

between the signals’ time series [3].  

While approaches like Pearson’s correlation and 

independent component analysis (ICA) have been employed 

to derive MC both with static PET (see [4] for a review) and 

in the few research works with dynamic PET [5][6], the sparse 

inverse covariance estimation (SICE) framework has only 

been applied to static PET so far [1]. SICE is a promising 

approach, as it infers only direct connections, providing 

parsimonious and interpretable graphs, and it has already been 

tested for fMRI FC estimation [3].  

Handling dynamic PET data, however, comes with peculiar 

challenges as compared to fMRI or static PET: 1) the strong 

multicollinearity amongst time activity curves (TACs) makes 
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the sample covariance singular and not positive semidefinite; 

2) TACs are not normally distributed in time, which is an 

issue for SICE methods, since they are based on the use of L1 

penalty for Gaussian Graphical Models [7]. Moreover, there 

is no gold standard for TAC standardization [5][6]. 

We here compared different standardization strategies and 

algorithms capable of retrieving MC, i.e., subject-level 

undirected adjacency matrices, using dynamic [18F]FDG PET 

data from four healthy individuals. 

In addition, as estimating MC requires to parcel the brain 

into regions of interest, we assessed the impact of the 

parcellation scheme, employing both an anatomical [8] and a 

fMRI-based atlas [9]. 
The MC matrices were compared in terms of graph 

structure, across-subject reproducibility and similarity to a 
structural connectivity (SC) template. 

II.   MATERIALS AND METHODS 

 A. PET data acquisition and preprocessing 

Four healthy subjects (4 males, 51.2  20.8 years old) 

underwent simultaneous PET/MRI acquisitions on a Siemens 

3T Biograph mMR (Siemens Medical Solutions USA, Inc.), 

equipped with a 16-channel head/neck coil, at the Nuclear 

Medicine Unit, University Hospital of Padova, Italy. 

After bolus injection of 244 ± 22 MBq of [18F]FDG, 

dynamic PET data were acquired in list mode for 55 minutes. 

The off-line PET reconstruction was performed with the 

Siemens e7-tool and comprised attenuation correction, 

scatter, dead time and decay correction, ordinary Poisson 

ordered subset expectation maximization (OP-OSEM) with 3 

iterations and 21 subsets. The attenuation map was estimated 

from the patient’s T1w structural image as in [10]. The chosen 

reconstruction grid consisted of 34 frames of increasing 

duration (10x6s, 8x15s, 7x60s, 9x300s). Images were 

reconstructed as 256x256x127 matrices (voxel size 2.8 x 2.8 

x 2 mm). No spatial smoothing was applied. 

The subject’s structural scan consisted in a 3D T1w 

Magnetization Prepared-Rapid Gradient Echo (MPRAGE, 

TR/TE 2400/3.2 ms, voxel size 1x1x1mm3). T1w images 

were bias field corrected, skull stripped, and segmented into 

grey matter, white matter, and cerebrospinal fluid, and the 

segmentations were linearly mapped from T1w to PET space. 

 Maurizio Corbetta is with the Department of Neuroscience and with the 
Padova Neuroscience Center (e-mail: maurizio.corbetta@unipd.it) 

 Alessandra Bertoldo is with the Department of Information 

Engineering and with the Padova Neuroscience Center (e-mail: 
alessandra.bertoldo@unipd.it). 

Assessing different approaches to estimate single-subject metabolic 

connectivity from dynamic [18F]fluorodeoxyglucose Positron 

Emission Tomography data 

Tommaso Volpi, Erica Silvestri, Maurizio Corbetta, Alessandra Bertoldo 

2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

978-1-7281-1178-0/21/$31.00 ©2021 IEEE 3259



  

Partial volume effects were considered negligible as no 

spatial smoothing has been performed and PET signals have 

been extracted only from voxels within the gray matter 

segmentation. Dynamic PET was motion-corrected using an 

in-house combination of PMOD (www.pmod.com) and 

FSL’s mcflirt [11]. 

The voxel-wise PET TACs were parcellated according to 

the AAL2 anatomical atlas [8] (the last 8 parcels, which 

belong to the cerebellum, were discarded for small size), and 

the Schaefer cortical atlas [9] (100 cortical regions), 

supplemented by 12 subcortical regions delineated by 

Freesurfer [12]. For both atlases, the total number of parcels 

amounted to 112. 

The first 10 frames (60 s) of the parcel-wise PET TACs 

were discarded, due to high noise content; the remaining 

frames were interpolated on a uniform virtual grid (15 s step), 

obtaining a subject-wise matrix 𝑿 ∈ ℝp×T, where p is the 

feature size (112 parcels) and T is the sample size (216 time 

points). 

 B. Data standardization 

The parcel-wise TACs were standardized as follows:  

1) A matrix 𝑿𝑍 is obtained by z-scoring 𝑿: each column 

of 𝑿 is centered to have mean 0 and scaled to have 

standard deviation 1 (i.e., subtracting the global mean and 

dividing for its standard deviation). Subsequently, 𝑿𝑍𝑇  is 

generated by subtracting the mean from each row (i.e., 

removing the parcel’s mean); 

2) A matrix 𝑿𝑆 is obtained by subtracting the mean from 

each column of 𝑿. Subsequently, 𝑿𝑆𝑍 is generated by z-

scoring 𝑿𝑆: each row of  𝑿𝑆 is centered to have mean 0 

and scaled to have standard deviation 1; 

3) A matrix 𝑿𝑀 is obtained by dividing each row of 𝑿 by 

the mean across rows of 𝑿, as in [5][6]. 

C. Similarity-based approaches 

Three pairwise similarity metrics were derived from the 

standardized data 𝑿𝑍𝑇 , 𝑿𝑆𝑍 , 𝑿𝑀, as for FC [13]. 

First, the bivariate Pearson’s correlation coefficient r [6] 

was calculated between each pair of rows of 𝑿. Secondly, the 

pairwise Euclidean distance was computed between each pair 

of rows of 𝑿 and rescaled to the [0;1] range, then its 

complement to 1 was calculated as a similarity metric. 

Thirdly, cosine similarity was calculated as: 

𝐶𝑜𝑠𝑆𝑖𝑚 =  
𝑋𝑖𝑋𝑘

‖𝑋𝑖‖‖𝑋𝑘‖
=  

∑ 𝑥𝑖𝑡𝑥𝑘𝑡
𝑇
𝑡=1

√∑ 𝑥𝑖𝑡
2𝑇

𝑡=1  √∑ 𝑥𝑘𝑡
2𝑇

𝑡=1

                    (1)  

where 𝑋ℎ = (𝑥ℎ1, 𝑥ℎ2, . . , 𝑥ℎ𝑇)′, for h = 1, …, p.  

D. Sparse inverse covariance estimation (SICE) methods 

Gaussian Graphical Models assume that the T observations 

for every feature p follow a multivariate normal distribution 

with mean vector 𝜇𝑝 ∈ ℝ and covariance matrix 𝚺 ∈ ℝ𝑝×𝑝 . 

The precision matrix 𝚯 = 𝚺−1 is the inverse of  𝚺, and can be 

represented by an undirected graph with p nodes, i.e., the 112 

parcels, and 𝑝 × 𝑝 edges, which capture conditional 

dependence amongst the parcels. A partial correlation matrix 

𝚷 can then be derived from 𝚯 by standardization: 

Π(𝑖,𝑘) = −
𝛩(𝑖,𝑘)

√𝛩(𝑖,𝑖)𝛩(𝑘,𝑘)
    for i= 1, …, p and k= 1, …, p      (2) 

Before employing SICE, the sample covariance 𝑺 ∈ ℝ𝑝×𝑝   

 was calculated for 𝑿𝑍𝑇 , 𝑿𝑆𝑇 , 𝑿𝑀. With high multicollinearity 

(reciprocal condition number ≅ 0), 𝑺 is singular, non-Positive 

Definite (PD), and not invertible. To address this, the nearest 

PD alternating projection method [14] was used to enforce 

positive semi-definiteness by finding the closest positive 

semi-definite matrix 𝑺𝑃𝑆𝐷 to the covariance in terms of 

Frobenius norm: 𝑺𝑃𝑆𝐷 = 𝑚𝑖𝑛
𝑺⪰0

∥ 𝑺 − �̂� ∥𝐹 . 

Higham’s algorithm was implemented with the function 

nearPD from the R (www.r-project.org/) package Matrix.  

The graphical LASSO (GLASSO) [7] estimates  by 

maximizing the following objective function 

Θ̂ = argmax
Θ≻0

(log(det Θ) + 𝑡𝑟(𝑆Θ) − 𝜆‖Θ‖)                 (3) 

where tr is the trace, 𝚯 ≻ 0 denotes that 𝚯 is PD, det is the 

determinant, and 𝜆 is the regularization parameter.  

Four SICE approaches based on L1 regularization of the 

log-likelihood of a multivariate Gaussian distribution were 

selected: 

 The DP-GLASSO algorithm [15] was chosen as it exhibits 

monotone behavior in maximizing the objective function, 

does not have convergence issues, and has PD solution. The 

GLassoElnetFast [16] R package implementation was used. 

 The nonparanormal truncated approach [17] transforms 𝑿 

into a multivariate Gaussian latent variable 𝑍𝑖𝑗, by means 

of 𝚽, which is a smooth, monotone function used to 

transform 𝑿’s marginal distributions. Here, 𝚽 was chosen 

as the truncated empirical cumulative distribution function 

and computed with the R package huge [18]. The covariance 

of the transformed data was used as input for DP-GLASSO. 

 The skeptic method (“Spearman/Kendall Estimates 

Preempt Transformations to Infer Correlation”) [19] 

computes the covariance matrix as Σ̂𝜌 = (�̂�𝑖𝑘
𝜌

) with (�̂�𝑖𝑘
𝜌

) =

2 ∗ sin(
𝜋

6
 �̂�𝑖𝑘) as the Spearman’s 𝜌 rank-based covariance 

estimator. The skeptic estimation of the covariance matrix 

was implemented with the R package huge [18], and then 

subjected to the DP-GLASSO algorithm. 

 𝛾-LASSO is a robust SICE estimator based on the 𝛾-

divergence [20]. For 𝛾 = 0, the solution is equal to 

GLASSO’s, for higher values a weighted form of GLASSO 

is deployed, with observations weighted as outliers if their 

likelihood is small. 𝛾-LASSO has always PD solution, its 

bias is small, and performs well for skewed distributions and 

high presence of outliers. However, as the optimization 

problem is non-convex, the computational process is time 

consuming. 𝛾-LASSO was implemented with the R package 

rsGGM using the DP-GLASSO algorithm [20].  

Each 𝚯 matrix estimated by SICE methods was converted 

to a partial correlation matrix 𝚷. 

1. Across-subject and across-method reproducibility 

Since, as for SC and FC, the MC matrix is expected to be 

sparse, before comparing the obtained connectivity matrices, 

a sparsity threshold was applied to retain only 20% of the 

edges. These sparse matrices, calculated in every subject for 

each SICE and non-SICE method, and for each 

standardization method, were then binarized [1]. Moreover, 
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the median MC matrix across subjects was calculated for each 

method and thresholded at 20% sparsity. 

Pairwise Dice similarity coefficients were used to compare 

1) binary MC matrices across subjects, and 2) binary median 

MC matrices across methods. 

B. Modularity of the estimated networks 

For all median MC matrices, the associated graph modularity 

was assessed by means of the Louvain’s community detection 

method [21], with a resolution parameter varying across a 

linearly spaced grid of values (from 0.9 to 1.75, with 0.05 

step). Finally, the modularity metric, Q, was employed to 

compare community structure across graphs. 

C. Comparison with structural connectivity 

A publicly available tractography atlas was used to create a 

group-level SC matrix [22]. This resulted in two 112x112 SC 

adjacency matrices (one for each parcellation scheme) whose 

entries represent the number of white matter tracts between 

each pair of the 112 selected parcels. As for MC, the sparsity 

level of the matrix was set to ~20%.  

To assess the agreement between the estimated direct 

metabolic connections and the underpinning structural 

connections, the Dice similarity between binarized SC and 

each binary median MC network was computed. 

III. RESULTS 

A representative selection of the median MC matrices, 

which were extracted for the seven estimation methods, three 

standardizations and two atlases, is shown in Fig. 1. From 

visual inspection, the LH-RH structure with clearly 

distinguishable inter-hemispheric homotopic connections  is 

apparent in most methods. Additionally, the 𝛾-LASSO matrix 

for standardization 𝑿𝑆𝑍 (first row, second from the left) shows 

marked block-diagonal structure with strong connectivity 

within each subnetwork. 

 

Fig. 1:  Median MC matrices for 4 estimation methods (DP-GLASSO, 𝛾-

LASSO, Pearson’s correlation and Euclidean Distance) and 2 standardization 

approaches (𝑿𝑆𝑍 , 𝑿𝑀), the AAL2 atlas. Each symmetric matrix is organized 
into 4 blocks: left upper block, as the connectivity between left hemisphere 

(LH) regions; right lower block, as the connectivity between right hemisphere 

(RH) regions; left lower block and right upper block, as connections between 
LH and RH. Additional subdivisions (black grid) represent subnetworks of 

regions. Edges around the main diagonal represent within-subnetwork 

connectivity, the secondary diagonals (left lower and right upper blocks) 
instead represent inter-hemispheric homotopic connections. 

For what concerns Louvain’s Q values of the median MC 

matrices, while SICE methods’ modularity structure is 

insensitive to the different values of the resolution parameter 

(𝜇 ± 𝜎 = 0.25 ± 0.003), non-SICE methods display 

decreasing Q values as the resolution parameter becomes 

higher (𝑚𝑎𝑥 =  0.4;  𝑚𝑖𝑛 =  0.1). 

When assessing across-subject reproducibility, Dice 

similarity for SICE methods is low-moderate (0.3-0.4), while 

non-SICE methods have significantly higher Dice (0.5-0.6) 

for all standardizations (Fig. 2). Both the AAL2 and Schaefer 

atlas demonstrate the same pattern, but standardization 𝑿𝑆𝑍 

leads to higher Dice values for SICE methods with Schaefer 

(𝜇 ± 𝜎 = 0.3 ± 0.02), with clearer distinction from 𝑿𝑍𝑇  (𝜇 ±
𝜎 = 0.23 ± 0.02) and 𝑿𝑀 (𝜇 ± 𝜎 = 0.24 ± 0.02). 

The across-method similarity of median MC matrices, 

assessed with Dice, showed that SICE and non-SICE methods 

are clustered separately, especially for standardization 𝑿𝑆𝑍 

(not shown). 
For what concerns the MC-SC similarity, the non-SICE 

methods have higher Dice values (0.3-0.4) than the SICE 
methods (0.2-0.3). This is true especially for AAL2 (Fig. 3), 
while for Schaefer the difference is weaker (not shown).  

IV. DISCUSSION 

The aim of this work was to derive MC from dynamic 

[18F]FDG PET at the single-subject level, with focus on 

network characterization and data standardization.  

The main issues to be faced in MC estimation are related to 

the non-Gaussianity and multicollinearity of dynamic PET. 

The first problem was tackled by comparing methods 

designed for a bivariate or multivariate Gaussian context 

(Pearson’s correlation, Cosine Similarity, DP-GLASSO) to 

other approaches (truncated, skeptic, 𝛾-LASSO, Euclidean 

distance) designed for data with heavy-tailed distribution and 

high outlier contamination. The multicollinearity of the input 

data, leading to singular covariance 𝑺, was handled using the 

DP-GLASSO algorithm [15] for all SICE methods, to 

guarantee a PD estimate of 𝚯, together with Dykstra’s 

correction [14]. However, the second group of methods did 

not seem to provide better reproducibility or a good match 

with the underlying structure than their parametric 

counterparts. 

 As for data standardization, we tested approaches aimed at 

highlighting different characteristics of the signal: while 

methods 1) and 3) evaluate the fluctuations around the 

metabolic baseline, as in [5][6], method 2) emphasizes the 

fluctuations of the signal with respect to itself.  

 
Fig. 2:  Across-subject Dice Similarity values for binarized MC matrices 

(20% sparsity), AAL2 atlas. Each 4x4 block represents the similarity between 

subjects (n = 4) for a given estimation (rows) and standardization (columns) 
method. 
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Fig. 3: Dice similarity between binarized SC and median MC matrices (20% 

sparsity) for all standardization (rows) and MC estimation (columns) 
methods, AAL2 atlas. 

 

Since no gold standard is available, one must remember 

that non-trivial differences in MC networks emerge with 

different standardization methods. 

It should be noted that the PET data, reconstructed with a 

34-frame time grid, was subjected to virtual grid 

interpolation. This is different from previous studies with 

dynamic PET MC, where a uniform grid was employed 

directly for data reconstruction [5][6]. We believe that the 

approach used here is faithful to the PET count statistics, 

whose noise variance changes considerably across the scan, 

and thus more appropriate for MC estimation. 

Finally, the biological interpretation of dynamic PET MC 

is still under debate, as it is likely to be strongly driven by 

pharmacokinetic aspects of tracer distribution and absorption 

[2][6]. Regarding this, future work should explore how these 

results relate to constant infusion functional [18F]FDG PET, 

from which MC has also been estimated [23].  

V. CONCLUSION 

We presented two class of methods (SICE and non-SICE) 

that can be used to derive MC networks from dynamic 

[18F]FDG PET data at the single-subject level. Pearson’s 

correlation, Euclidean distance and Cosine Similarity (i.e., 

non-SICE methods) provide better results for between-subject 

reproducibility and similarity to SC.  

Notably, most methods succeeded in retrieving a similar 

network structure, with consistent identification of inter-

hemispheric and homotopic connections which are expected 

from brain connectivity studies. The choice of the 

standardization method for PET TACs leads to non-trivial 

differences between networks. 

Future work should expand on these findings by employing 

different SICE algorithms (non-convex penalties, Bayesian 

methods, Graphical Elastic Net [16]) and investigating MC 

estimation for other PET tracers.  
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