
  

  

Abstract— Independent component analysis (ICA) has been 
widely applied to estimate brain functional networks from 
functional magnetic resonance imaging (fMRI) data. ICA is a 
data-driven approach, however, the number of components 
must be prespecified. Indeed, it is difficult to estimate or 
determine an optimal number of components in fMRI analysis. 
In this paper, we propose a SMART (splitting-merging assisted 
reliable) ICA to overcome the problem. Our method first 
estimates group-level components using different settings and 
then yields reliable components by using a splitting and merging 
clustering approach. Subject-specific components are obtained 
using our previously proposed group information guided ICA 
(GIG-ICA) based on reliable group-level components to estimate 
individual-subject independent components. Simulations with 
unique components for subjects showed our method extracted 
components with high similarity to the ground truth spatial 
maps (SMs). For real fMRI data, the functional networks 
extracted by our method showed both similarity and specificity 
across subjects. To sum up, our method can effectively and 
accurately identify subject-specific brain functional networks 
without a need of parameter setting. 
 

Clinical Relevance— SMART ICA automatically extracts 
reliable subject-specific brain functional networks that can be 
used for biomarker identification. 

I. INTRODUCTION 

Brain functional network analysis using functional 
magnetic resonance imaging (fMRI) data plays an important 
role in the neuroscience field, as network biomarkers are 
expected to benefit the diagnosis of mental disorders. 
Although different network analysis methods have been 
proposed, independent component analysis (ICA) is one of the 
most widely used methods and has been applied to explore 
functional impairments for various mental disorders [1, 2].  

Relative to the region of interest (ROI) based approaches, 
ICA is data-driven, because there is no need of defining a 
priori brain regions in ICA. However, one must select or 
estimate the number of components, which hinders its 
automation ability to some extent. Ideally, the component 
number should be equal to the real source number. However, 
in practice, it is very difficult to estimate or determine an 
optimal number in ICA for brain functional network extraction, 
and other work has suggested that multiple model orders 
contain complementary information [3]. Regarding the 
analysis of multi-subject fMRI data, the commonly applied 
group ICA [4] also requires the input of the component number 
to yield group-level networks for further individual-subject 
network computation. Indeed, some early work suggests 
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estimating the number of components in ICA using 
information theoretic criteria (ITC) [5] such as minimum 
description-length criterion (MDL), Akaike’s information 
criterion (AIC), and Bayesian information criterion (BIC). 
However, none of these methods works perfectly for the 
estimation due to complex noise structures [6]. In addition, 
since there is an assumption of independently and identically 
distributed samples in ITC, downsampling is often conducted 
before the estimation, which may cause degradation in the 
accuracy of the order estimation. In another study, based on 
the finite memory length and the autoregressive model, 
entropy-rate-based components number selection methods 
using ITC were proposed to utilize all available subjects [7]. 
Due to that different methods could result in diverse 
estimations, in practice researchers often set an empirical or 
arbitrary number like 20-40 for low model order and 100-200 
for high model order in fMRI studies [1, 8]. 

Some other studies tried to search the optimal components 
or the component number by setting varying settings. With the 
component number ranging from 2 to 100, a study by Kairov 
ranks the obtained independent components based on their 
stability and reproducibility in multiple ICA runs (with 
random initialization) in order to yield a maximally stable 
model order, however, the method has not been applied to 
fMRI studies [9]. Kuang et al. estimated functional networks 
with different model orders and selected the ‘best’ result that 
fits well with the reference networks [10].  

Recently, a method called Snowball ICA was proposed, 
which generates seed components by performing ICA on 
randomly selected subjects’ fMRI data and then updates the 
seed components iteratively by adding different blocks of 
fMRI data [11], until all subjects’ data are used. Although the 
method does not require the component number as an input, 
the method may be sensitive to the generation of the seed 
components and the organization manner of fMRI blocks. 
Moreover, Snowball ICA is very time-consuming.  

So far, how to estimate reliable functional networks using 
ICA is still a challenging issue in the neuroscience field. In this 
paper, we propose a model-order free ICA method, named 
SMART (splitting-merging assisted reliable) ICA, which 
achieves automatic estimation of reliable independent 
components (ICs) by combining ICA with splitting and 
merging clustering. Using simulations, we validate that the 
components can be perfectly extracted by our method. Using 
real fMRI data, our method also successfully extracted 
meaningful subject-specific functional networks. 
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II. OUR METHOD 

A. Our SMART (splitting-merging assisted reliable) ICA 
method 
Our new method combines ICA with a clustering 

technique to yield reliable brain functional networks based on 
the independent components obtained from ICA runs with 
different model orders. Our method can be applied to both ICA 
on individual subject and group ICA on multi-subjects. In the 
following, we describe how SMART ICA estimates reliable 
group-level components. Based on this, we extend SMART 
ICA to enable it to estimate individual-level networks by 
utilizing our previously proposed group information guided 
ICA (GIG-ICA) [12, 13] with the guidance of reliable group-
level components. Fig. 1 shows the pipeline of our method that 
primarily includes three steps.  

In Step 1, ICA is performed with different numbers of 
components as the input to obtain the initial group-level ICs 
that have different network scales. We use 𝑋𝑋 =
(𝑋𝑋1,𝑋𝑋2, … ,𝑋𝑋𝑛𝑛, … ,𝑋𝑋𝑁𝑁) to denote the fMRI data of 𝑁𝑁 subjects. 
𝑋𝑋𝑛𝑛 ∈ 𝑅𝑅𝑇𝑇×𝑉𝑉 , where 𝑇𝑇 (1, 2, … , 𝑡𝑡)  represents the number of 
time points, and 𝑉𝑉 (1, 2, … , 𝑣𝑣)  represents the number of 
voxels within a brain mask. Before ICA, we perform subject-
level PCA on each subject’s data 𝑋𝑋𝑛𝑛 and then perform a group-
level PCA on the concatenation of the reduced data, resulting 
in a whole matrix 𝐷𝐷. Then, the Infomax algorithm [14, 15] is 
implemented to decompose 𝐷𝐷 into 𝑘𝑘 independent components. 

𝐷𝐷 ≈ 𝐴𝐴 × 𝑆𝑆, (1) 
Here, 𝐴𝐴 ∈ 𝑅𝑅𝑘𝑘×𝑘𝑘  represents the mixing matrix and 𝑆𝑆 ∈ 𝑅𝑅𝑘𝑘×𝑉𝑉 
represents the group-level ICs.  

We set 𝑘𝑘 to different numbers, thus resulting in a total of 𝑔𝑔 
initial group-level ICs, represented by 𝐹𝐹 ∈ 𝑅𝑅𝑔𝑔×𝑉𝑉, that will be 
utilized to automatically generate reliable group-level ICs. 

In Step 2, we cluster those initial group-level ICs by using 
a community detection method followed by a merging and 
splitting technique to generate reliable group-level ICs. First, 
for all initial group-level ICs (i.e. 𝐹𝐹), a community detection 
method [16] is performed to cluster the 𝑔𝑔 initial group-level 
ICs. And then, inspired by previous studies [17], we propose 
the following rules of splitting and merging to refine the 
clustering result from the community detection so as to get 
reliable group-level ICs.  

Before introducing the rules, we define that the distance 
between any two components is calculated by equation (2). 

𝑑𝑑(𝑥𝑥,𝑦𝑦) = 1 − |𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(𝑥𝑥, 𝑦𝑦)|, (2) 
where 𝑥𝑥  and 𝑦𝑦  represent any two components, 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐(∙) 
represents the Pearson correlation coefficient, and |∙| 
represents absolute value operation. We also determine that a 
cluster center is defined as the component that is closest to the 
mean component in the cluster, which can be formulated as (3). 

min
𝑠𝑠𝑖𝑖

{𝑑𝑑(𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛)} , (3) 
where 𝑠𝑠𝑖𝑖 represents the cluster center and 𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 represents the 
mean of all components in the current cluster. 

The rules of splitting: 

Process s1: Calculate the average inter-cluster distance 
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛.  

𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 =
2

𝑧𝑧 × (𝑧𝑧 − 1)
� � 𝑑𝑑(𝑠𝑠𝑖𝑖 , 𝑠𝑠𝑗𝑗)

𝑧𝑧

𝑗𝑗=𝑖𝑖+1

,
𝑧𝑧

𝑖𝑖=1

(4) 

where 𝑠𝑠𝑖𝑖 and 𝑠𝑠𝑗𝑗 represent the cluster centers, 𝑧𝑧 represents the 
current cluster number. 

Process s2: Calculate the sum (𝑑𝑑𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑚𝑚 ) of the distance 
between the cluster center and the nearest component (except 
for itself) as well as the distance between the cluster center and 
the farthest component for each cluster. 

𝑑𝑑𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑚𝑚 = max
𝑥𝑥𝑝𝑝

�𝑑𝑑�𝑠𝑠𝑖𝑖 , 𝑥𝑥𝑝𝑝��+ min
𝑥𝑥𝑝𝑝

�𝑑𝑑�𝑠𝑠𝑖𝑖 , 𝑥𝑥𝑝𝑝��, 𝑠𝑠. 𝑡𝑡. 𝑥𝑥𝑝𝑝 ≠ 𝑠𝑠𝑖𝑖 (5) 

where 𝑠𝑠𝑖𝑖  represents the cluster center, and 𝑥𝑥𝑝𝑝  represents any 
component in this cluster. 

Process s3: A cluster should be split if 𝑑𝑑𝑖𝑖𝑛𝑛𝑖𝑖𝑖𝑖𝑚𝑚 > 𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛/2. 
Then, another community detection is conducted to split this 
cluster to update the clustering result. 

Process s4: Update the cluster center and the number of 
clusters. 

Process s5: If the number of the cluster remains the same, 
stop the splitting process, otherwise, return to Process s1. 

The rules of merging: 

Process m1: Calculate the average inter-cluster distance 
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛 using formula (4). 

Process m2: Calculate the distance (𝑑𝑑𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖) between any 
two cluster centers for all clusters using formula (2).  

Process m3: Two clusters should be merged if 𝑑𝑑𝑖𝑖𝑛𝑛𝑖𝑖𝑚𝑚𝑖𝑖 <
𝑑𝑑𝑚𝑚𝑚𝑚𝑚𝑚𝑛𝑛/2. 

Process m4: Update the cluster centers and the number of 
clusters. 

Process m5: If the number of the cluster remains the same, 
stop the merging process, otherwise, return to Process m1. 

The operation of splitting and merging is iteratively 
conducted until the cluster labels of the initial group-level ICs 
don’t change. As such, the initial group-level ICs are grouped 
into different clusters, whose cluster centers represent the 
reliable group-level ICs. 

In Step 3, we take reliable group-level ICs as reference 
information to perform GIG-ICA [13, 18] to obtain individual-
level ICs and related time series. After that, automatic 
denoising is done to extract meaningful functional networks. 

B. Validation using simulation 
The simulation data to evaluate our method are generated 

via the SimTB toolbox [19]. Two groups (group A and group 
B, each group contains 15 subjects) are generated. Each 
subject’s data are obtained using eight spatial components 
(SMs) and their related time series (with 150 time points). 
Among the eight SMs, six are common across the two groups 
(A and B) and two are unique for each group. Note: random 
spatial transition, rotation, and deformation are added for SMs, 
and noises are simulated as well. 

For the simulation data, 𝑘𝑘 is set from 5 to 15 in Step 1, so 
𝑔𝑔 (110) initial group-level ICs are computed. In Step 3, we 
propose to denoise ICs by measuring the similarity between 
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Fig. 1. The pipeline of SMART ICA. 

Fig. 2. Results of reliable group-level ICs. (A) Correlation 
matrix of 12 reliable group-level ICs. (B) Correlation matrix 
of 110 initial group-level ICs after the sorting according to the 
cluster labels.  

Fig. 3. The subject-specific components for one example 
subject from group A (see Fig. 3(A)) and group B (see Fig. 
3(B)), respectively. In both (A) and (B), we include correlation 
𝑐𝑐 between the extracted subject-specific ICs and real SMs (the 
first line), the subject-specific ICs (the second line), and the 
real SMs (the third line).  

Fig. 4. The similarity between subject-specific ICs and real 
SMs of all components across all subjects. (A) displays the 
similarity of six common ICs (note: each IC is included in the 
data of all 30 subjects from group A and group B). (B) displays 
the similarity of four subject-unique ICs. The first two come 
from group A and the last two come from group B. 

Fig. 5. Some subject-specific functional networks 
estimated by SMART ICA using real fMRI data. In (A), we 
show two networks with the greatest mean similarity (𝑐𝑐 =
 0.71) across subjects. In (B), two networks with the lowest 
similarity (𝑐𝑐 =  0.12) are shown. Note: the corresponding left 
and right networks were estimated using the same reliable 
group-level IC. 

level IC reflected by the number of Maximally Stable 
Extremal Regions (MSER) [20]. Here, if the similarity 
between any two ICs is greater than 0.5, we average the two 
ICs as a new IC. For each IC, if the MSER number is less than 
150, the IC is considered as one network, otherwise, it is taken 
as noise. It's worth noting that our method is insensitive to the 
two parameters. 

To show the results of simulation data, we match the 
extracted subject-specific components and real SMs of all 
subjects according to the correlation 𝑐𝑐  between them and 
display the real SMs and extracted subject-specific 
components of two subjects that come from group A and group 
B, respectively. In addition, the similarity between subject-
specific functional networks and real SMs of all components 
across all subjects is displayed by using boxplots. 

C. Validation using real fMRI
To verify the effectiveness of SMART ICA, we analyze

fMRI data from 25 healthy controls. Here, 𝑘𝑘 is set to include 
both low (20, 25, and 30) and high (75 and 100) model orders 
in Step 1. In Step 3, denoising can be conducted using a similar 

way to that in simulation-based experiments or using a toolbox 
such as Noisecloud in GIFT [21]. For the subject-specific 
components estimated using the same reliable group-level IC, 
we calculate their similarity between different subjects to 
observe the consistency and unique properties of functional 
networks. Meanwhile, we show some example subject-
specific networks. 

III. RESULT

A. Results using simulation
By clustering 110 initial group-level ICs, 11 reliable

group-level ICs were obtained. Fig. 2(A) shows the correlation 
coefficients of 11 reliable group-level ICs, meaning that each 
reliable group-level IC has a unique pattern. Fig. 2(B) shows 
the correlation coefficient matrix of 110 initial group-level ICs, 
sorted according to clustering labels. It is seen that there are 
high intra-cluster similarity and low inter-cluster similarity in 
Fig. 2(B), indicating that our method performs effective 
clustering on the initial group-level ICs.  

After denoising processing on the individual-subject ICs, 
eight ICs were preserved for each subject. For each group 
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(group A and B), we show the obtained ICs for one example 
subject in Fig. 3. We found that both the common and unique 
components were perfectly extracted, and the similarity 
between the estimated components and the real SMs is very 
high for the two subjects. The similarity between subject-
specific functional networks and real SMs of all components 
across all subjects is summarized in Fig. 4 using boxplots. It is 
seen that the overall accuracy of the estimated components is 
high.  

B. Results using fMRI data 
By applying our SMART ICA on real fMRI data, 103 

reliable group-level ICs were obtained based on 250 initial 
group-level ICs. Among the 103 ICs, 3 ICs were retained from 
the results of 𝑘𝑘 = 20, 5 ICs were retained from the results of 𝑘𝑘 
= 25, 11 ICs were retained from the results of 𝑘𝑘 = 30, 23 ICs 
were retained from the results of 𝑘𝑘 = 75, and 61 ICs were 
retained from the results of 𝑘𝑘  = 100, supporting that our 
method can simultaneously take advantage of networks with 
different scales. When the reliable group-level ICs came from 
low model order, the mean percentage of associated ICs that 
belonged to the same cluster and came from the lower order 
models was 71.8%.  When the reliable group-level ICs came 
from high model order, the percentage of associated ICs that 
belonged to the same cluster and came from the high order 
models was 90.5%. Fig. 5 displays four subject-specific 
networks that were extracted by SMART ICA using real data. 
Here, we show two subject-specific networks that were most 
similar and two subject-specific networks that were most 
different. The results show that our method not only can find 
biologically corresponding functional networks but also can 
explore unique networks among different subjects. 

IV. DISCUSSION AND CONCLUSION 

ICA has been widely applied to the analysis of brain 
functional networks using fMRI. However, how to determine 
the model order is a difficult problem, although there have 
been some efforts [11]. In this paper, we propose a method, 
called SMART ICA, that can automatically identify subject-
specific components, without the need of setting a specific 
number of components. In our method, an advanced clustering 
technique is proposed to integrate the ICs from varying model-
order settings so that the functional networks with multi-scales 
can be preserved.  

Our method performs well for both simulations and real 
fMRI data. Regarding the two groups of simulated data, the 
number of subject-specific components that are obtained by 
our method is the same as the number of real SMs. Our result 
shows that SMART ICA can accurately estimate the 
components even when subjects have unique components. 
Using fMRI data, we not only found that the visual networks 
show the greatest similarity between different subjects but also 
revealed that some unique networks relate to higher-level 
functions (e.g., parahippocampal and temporal pole). Taken 
together, our method is promising for rapidly promoting the 
application of ICA on fMRI analysis, as our method can 
simultaneously capture components estimated well at different 
scales (both low and high model orders). 
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