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Abstract— Driven by the advancements of wearable sensors
and signal processing algorithms, studies on continuous real-
world monitoring are of major interest in the field of clinical
gait and motion analysis. While real-world studies enable a
more detailed and realistic insight into various mobility param-
eters such as walking speed, confounding and environmental
factors might skew those digital mobility outcomes (DMOs),
making the interpretation of results challenging. To consider
confounding factors, context information needs to be included
in the analysis. In this work, we present a context-aware
mobile gait analysis system that can distinguish between gait
recorded at home and not at home based on Bluetooth proximity
information. The system was evaluated on 9 healthy subjects
and 6 Parkinsons disease (PD) patients. The classification of
the at home/not at home context reached an average F1-score
of 98.2 ± 3.2 %. A context-aware analysis of gait parameters
revealed different walking bout length distributions between
the two environmental conditions. Furthermore, a reduction of
gait speed within the at home context compared to walking
not at home of 8.9 ± 9.4 % and 8.7 ± 5.9 % on average for
healthy and PD subjects was found, respectively. Our results
indicate the influence of the recording environment on DMOs
and, therefore, emphasize the importance of context in the
analysis of continuous motion data. Hence, the presented work
contributes to a better understanding of confounding factors
for future real-world studies.

I. INTRODUCTION

Wearable sensors with inertial measurement units (IMUs)
are useful to objectively measure various mobility parameters
and close the gap between specialized motion laboratories
and continuous monitoring in real-world scenarios [1]. Due
to their low cost and small size, they can unobtrusively assess
several digital mobility outcomes (DMOs) in a person’s
everyday life. Those DMOs range from macro-level parame-
ters, like walking bout (WB) distributions to spatio-temporal
micro parameters, like stride length or gait speed [2].
Therefore, mobile sensor-based systems can help to quantify
clinically relevant outcomes like mobility, gait performance,
or fall risk as well as disease fluctuations or progression
in neurological diseases like Parkinson’s disease (PD) [2].
While wearable sensors already proved their feasibility to
objectively measure gait parameters in standardized clinical
settings [3], continuous real-world monitoring enables a more
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detailed and realistic insight into a patients health status
which cannot be assessed during hospital checkups [1], [4].
However, in real-world studies, new challenges arise, such as
various environmental factors that could potentially influence
mobility behaviour and thus skew DMOs [2].

To control potential confounding factors, Wang et al. [5]
proposed a wearable gait analysis system that used GPS lo-
cation and IMU sensor data to successfully identify repeating
paths to enable more comparable conditions in future studies.
Patterson et al. [6] found significant differences in stride
times of healthy subjects between simulated conditions like
walking on a rough surface (gravel) or in a busy hallway
while assessing context by a wearable camera. Lunardini
et al. [7] showed that dual-tasking while walking in an
outdoor scenario resulted in a reduced cadence in an elderly
population. First real-world patient studies conducted by Del
Din et al. [1], or Mc Ardle et al. [4] could indicate that
WB length influences gait parameters and, therefore, could
be interpreted as ”proxy measures of context” with varying
clinical information gains. Even gait parameters assessed
during standardized gait tests are influenced by changes of
context, as reported by Gaßner et al. [8], where a reduced
gait speed at home compared to in-clinic measurements of
PD patients was found.

Evidently, there is a need for secondary data sources
during real-world studies that can be considered along with
the primary DMOs to enable comparable conditions or
to consider confounding effects. Especially, the influence
of frequent conditions like walking at home compared to
walking not at home on gait parameters in unsupervised
real-world studies has not been addressed in detail yet and
systems which can assess such context information in an
unobtrusive way are still missing.

In this work, we present a context-aware gait analysis
system that can distinguish between gait recorded at home
as well as gait not at home based on Bluetooth Low Energy
(BLE) proximity information. The context detection mecha-
nism was evaluated against diary annotations during a real-
world gait monitoring study. Furthermore, we investigated
the influence of the acquired context information on gait
parameters of a cohort of 9 young and healthy and 6
PD patients. Our proposed system identified context-related
differences in the WB length distribution and gait speed.
The presented approach could be easily integrated into other
monitoring systems which utilize BLE enabled sensors to
better understand environmental and confounding factors in
future real-world movement analysis studies.
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II. METHODS

A. System Overview

The proposed system consisted of two major parts: first,
the wearable sensor units (Portabiles GmbH, Germany) for
gait data recording, and second, a gateway device responsible
for aggregating sensor data and assessing context information
(Fig. 1). The sensor units feature BLE 5.0 connectivity and
incorporate an IMU with a 3D accelerometer and a 3D
gyroscope. The sensors are able to record more than 40 h of
continuous 6-axis IMU data and can be recharged wirelessly
based on the Qi-standard. The gateway device, developed for
this study, was based on a Raspberry Pi 3B+ to receive data
from the IMU sensor units and continuously scan for BLE
advertising packets. Respective Received Signal Strength
Indicator (RSSI) data was recorded to derive the context
information. Therefore, the wearable sensors additionally
served as BLE beacons sending advertisement packets with
an interval of 500 ms. The sensors started logging raw IMU
data to their internal storage as soon as they were removed
from their charging station and terminated the recording
when put back onto the charger at the end of a day. Subse-
quently, the gateway automatically downloaded the recorded
data via a BLE connection overnight, re-synced the sensor
internal clock, and triggered a flash erase.

RSSI

Gateway
Foot-worn IMUs

Fig. 1. Concept of the context detection mechanism: Foot-worn IMU
sensors serve as BLE beacons, resulting in a binary context classification.

B. Study Design

In the first part of the study (prior to the COVID-19
pandemic), the system was evaluated on 9 healthy subjects
(Tab. I), who used the system for 7 consecutive days. Par-
ticipants wore the sensors on their shoes’ lateral side (or
socks, if preferred) using 3D printed clips. To evaluate the
RSSI-based context detection, the subjects were asked to log
the time whenever they left the house or came back home
using a timestamp smartphone application (”TimeStamp”
from Google Play Store). Additionally, we also performed
a pilot study (during the COVID-19 pandemic) with 6 PD
patients (Table I) and an updated version of the system.
Patients received a set of orthopaedic shoes with the sensor
attached to the shoes instep position to wear the system
continuously for 14 consecutive days. PD patients did not
perform manual time stamp annotations.

The study was approved by the local ethics committee
Re-No. 165 18B (Friedrich-Alexander-University Erlangen-
Nuremberg, Germany). All participants gave written, in-
formed consent, prior to the data collection.

TABLE I
DEMOGRAPHICS OF STUDY POPULATION.

Healthy Parkinson’s Disease
Demographics
Age [years] 26.6 ± 1.8 64.8 ± 8.8
Sex (f/m) 2/7 2/4
Height [cm] 177.0 ± 9.5 171.3 ± 13.5
Weight [kg] 75.7 ± 11.9 68.2 ± 12.6
UPDRS-III - 13.8 ± 5.6
H & Y - 2.2 ± 0.4
Recording Setup
Sampling rate [Hz] 204.8 102.4
Duration [days] 7 14
Sensor position lateral instep

C. Context Detection Pipeline

For this work, a binary context detection was considered.
The system differentiates if a person is at home or not at
home, comparable to a geofencing approach. Therefore, the
acquired RSSI data were re-sampled to a fixed time period
of 10 s for easier handling. Second, the generated RSSI data
streams of the left- and right-sensor were fused by calculating
their mean over each time point (as illustrated in Fig. 2).
As long as any advertisement packets were received, the
sensors had to be still within the range of the gateway and,
therefore, the context information was set to at home. In case
no advertisement packets were received, the sensors were
considered out of range and thus not at home. However, as
obstacles or moving around at home could influence an all-
time stable reception of BLE packets, context changes with
a window size of less than 10 min were rejected.

−100

−80

−60

−40

−20

RS
SI

 [d
Bm

]

RSSI left sensor
RSSI right sensor
RSSI merged

08
:00

09
:00

10
:00

11
:00

12
:00

13
:00

14
:00

15
:00

16
:00

17
:00

18
:00

19
:00

20
:00

21
:00

Day Time

At   
home

Not   
at home Context

Context
filtered

Fig. 2. Example of a re-sampled and merged RSSI data stream over one
day as well as derived context information.

D. Context-Aware Gait Analysis Pipeline

All sensors were calibrated, according to Ferraris et al. [9]
prior to the recordings. To extract gait parameters from the
IMU data, the following pipeline was applied: Gait sequences
were extracted using harmonic frequencies [10] to identify
potential WB candidates. The sensor-coordinate-frame was
aligned to gravity based on static acceleration windows for
each WB to ensure the sensor’s constant alignment to the
body-frame. Next, stride candidates were segmented using a
template matching method, based on dynamic time warping
[11]. Temporal stride parameters were derived from detected
gait events and spatial stride parameters were calculated
using a zero-velocity-based double integration approach [12].
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Stride parameters were divided based on their start timestamp
and respective RSSI-based context information into strides
at home and strides not at home. Next, individual strides
were filtered to keep only straight strides (sensor heading
angle ± 45◦) and finally combined to WBs (minimum num-
ber of strides = 5, maximum resting period between WBs =
3 s) for further analysis.

1) Walking Bout Length Distribution: The resulting WBs
were divided by their recording context and grouped by
their number of strides into bins. To account for absolute
differences in the number of WBs between subjects, WB
counts were normalized by the total number of WBs within
the recording period for each subject individually. Due to the
constrained space and finite walking path available in the at
home environment, an upper limit for the at home WB length
distribution was expected. This limit was defined as the 95th

percentile (NP95home) of the WB length distribution at home
and calculated per subject. The definition was chosen to
exclude potential outliers (long WBs) in the at home context
which might be misclassified during the transition between
at home/not at home, or during short context changes which
could not be detected by our system.

2) Gait Speed: To analyze the effect of the at home vs
the not at home context on a primary DMO, the gait speed
was considered. To consider potential differences caused by
varying WB length (as previously reported in [1]), an addi-
tional condition was introduced, namely not at homeNP95

.
Here, only not at home WBs that contain a smaller or equal
number of strides than the before defined limit NP95home

were included, to only compare WBs of equal length. This
should result in a matching condition for the at home group
where differences can be solely attributed to the change in
context rather than influences due to WB length. Finally,
the mean gait speed of all strides within each condition was
calculated per subject and compared between the different
conditions. Therefore, gait speed was normalized per subject
to their gait speed not at home.

III. RESULTS

A. Context Detection Evaluation

In total, 164 context changes (leaving the house or coming
home) were annotated by the healthy subject cohort; 149
of these events could be captured by our proposed system
with a timing error of 0.59 ± 4.30 min. Overall, 15 of the
annotated events were missed (no matching event available
in a 30 min time window). These events could be identified
as very short labelled time windows, for example if a
subject labelled leaving the house for less than 10 min. Also,
some subjects reported that they occasionally forgot to label
leaving the house or coming back home using the smartphone
app, which is a common problem with subjective diary
annotations. The binary context classification, reached an
average F1-score of 98.2 ± 3.2 % (precision: 98.2 ± 2.2 %,
recall: 98.2 ± 4.3 %) in terms of correctly classified 10 s not
at home time windows. In total 531 h of recording time in the
not at home and 307 h in the at home context were available.

B. Context-Aware Gait Parameters

1) Walking Bout Length Distribution: Subjects of the
healthy cohort walked most of their WBs not at home, with
a high proportion of short WBs (Fig. 3). For the PD cohort,
the frequency of WBs at home and not at home was similar
for the shorter WB groups with a slightly higher proportion
of short WBs at home. The limit for the WB length at
home (NP95home) was found to be 16.8± 6.2 strides for the
healthy subjects and 44.2± 8.6 strides for the PD patients,
respectively. Longer WBs with more than 50 strides were
almost exclusively available within the not at home context.
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Fig. 3. Normalized WB length distributions grouped by their recording
context. Bars represent mean values; error bars correspond to the 95 %
confidence interval using bootstrapping.

2) Gait Speed: Subjects of both cohorts tended to walk
slower in the at home context (Fig. 4). Compared to the not
at home context, the gait speed was reduced by 27.2 ± 7.2 %
for healthy subjects and 20.7 ± 9.4 % for the PD patients.
After the exclusion of long WBs, resulting in the matched
condition not at homeNP95

, the reduction in gait speed to the
at home context was found to be 8.9 ± 9.4 % and 8.7 ± 5.9 %
for the healthy and PD cohort, respectively.
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IV. DISCUSSION

Our proposed context-aware gait analysis system was able
to accurately differentiate between at home as well as not at
home WBs with a promising context classification F1-score
of 98.2 ± 3.2 % without the need for additional hardware
(e.g., GPS loggers) carried by subjects or error-prone diary
annotations. This additional context information could enable
more comparable conditions as proposed by Wang et al. [5]
or yield information about sedentary behaviour and commu-
nity participation.

Furthermore, our context-aware analysis approach re-
vealed differences in WB length distribution as well as
gait speed related to the walking environment. The healthy
subject cohort walked considerably more WBs not at home,
with a low average limit (NP95home) of 16.1 strides at home.
This is most likely related to the fact that those subjects
(mostly employees and students) had to leave their house to
go to work or attend lectures during workdays and, therefore,
spent most of their activities not at home. For the PD cohort,
in contrast, the distribution of at home and not at home WBs
was similar, with an higher average limit (NP95home) of
44.2 strides at home. The increased proportion of at home
strides and higher limit could be explained by more time and
activities spent at home, which could be a first indication
for reduced community participation (this might be even
enhanced by the COVID-19 pandemic). The size or available
space within individual homes might be an additional factor
for longer and more at home WBs, but was not assessed
during our study. WBs with more than 50 strides were
almost exclusively found in the not at home context for both
groups. These WBs could most likely be attributed to outdoor
walking in an unconstrained environment.

Regarding gait speed, average differences of up to 27.2 %
for healthy and 20.7 % for PD subjects were found, when
comparing walking not at home with at home. To consider
the effects of varying WB length as reported previously by
Del Din et al. [1], the additional condition not at homeNP95

was introduced by applying the defined at home WB length
limit. Our results confirmed that parts of the difference in gait
speed were related to long WBs, which were only present in
the not at home context. However, after correcting the effect
of WB length, an average difference of 8.9 % and 8.7 % in
reduced gait speed was still present, for the healthy and PD
cohort, respectively. These differences in gait speed could be
attributed to the change in context, which might be related
to less space and a more constrained walking environment at
home, as already reported by Gaßner et al. [8]. Furthermore,
social and psychological factors like walking more relaxed or
less target-oriented at home might be reasons for the reduced
gait speed. The larger differences for the healthy subjects
could be explained by an increased functional capacity and
overall higher maximum walking speed in the not at home
context compared to the PD cohort. One PD subject showed
only small variations between all conditions but also only
few not at home WBs, compared to the others, which might
be related to sedentary behaviour or low functional capacity.

V. CONCLUSION AND OUTLOOK

The presented context-aware gait analysis system accu-
rately distinguished between WBs at home or not at home,
using BLE-based proximity information. Our results revealed
context-related differences in WB length distribution as well
as in gait speed. The PD cohort showed an increased pro-
portion of WBs at home compared to not at home, which
could be a first indicator for sedentary behaviour or reduced
community participation. Furthermore, a context-related re-
duction of gait speed, for almost all investigated subjects, was
identified, which might alter the interpretation of such DMOs
if not considered. Due to the rather low number of subjects,
similar experiments need to be repeated in a larger patient
cohort to enable also profound statistical analysis of context-
related effects. Overall, our work contributes to a better
understanding of the effects of confounding environmental
factors on DMOs in sensor-based real-world gait analysis.
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