
  

  

Abstract- One’s risk of fall can be quantified in terms of 

variability in one’s gait, reflecting a loss of automatic rhythm of 

one’s gait. In gait analysis, variability is commonly understood 

in terms of the fluctuation in the kinematic, kinetic, spatio-

temporal, or physiological information. Here, we have focused 

on the estimation of knee joint angle (kinematic variable) 

synchronized with some of the kinetic and spatio-temporal gait 

parameters while an individual walked overground. Our system 

consisted of a pair of shoes with instrumented insoles and knee 

flexion/extension recorder unit having bend sensors. In addition, 

we have used the Coefficient of Variation for estimating the 

variability in the knee flexion/extension angle while walking 

overground as an indicator of the risk of fall. A study with 

healthy individuals (young and old) walking overground on 

pathways having 00 and 1800 turning angles indicated the 

feasibility of our wearable system to compute the variability in 

knee flexion/extension angle as an indicator of the risk of fall.   

I. INTRODUCTION 

ninterrupted  gait without falls is important [1] since it 

ensures mobility and healthy community life. One’s lack 

of dynamic balance while walking can be a potential cause of 

falls [2] leading to lacerations, hip fracture, etc. One’s risk of 

fall can be quantified in terms of variability in one’s gait, 

reflecting a loss of automatic rhythm of one’s gait [3]. In fact, 

the variability in gait arises from many potential sources, 

categorized as internal (e.g., aging effects) and external (e.g., 

nature of pathways) to the individual [4]. In gait analysis, 

variability is commonly understood in terms of the fluctuation 

in the value of a kinematic (e.g., joint angle), kinetic (e.g., 

ground reaction force), spatio-temporal (e.g., gait events), or 

physiological (e.g., lower limb electromyogram) information 

[4]. While electromyogram of one’s lower limb muscles can 

quantify one’s gait pattern, the data collection might be 

intrusive in nature [5]. In contrast, the spatio-temporal gait 

events, kinetic and kinematic parameters [4] can characterize 

one’s gait in a non-intrusive manner. Here, we have focused 

on the estimation of joint angle (kinematic variable) of the 

knee joint (synchronized with some of the kinetic and spatio-

temporal gait parameters) while an individual walks 

overground. The estimation of joint angle is a key component 

of analysis of human gait [6]. One’s joint angles can be 

measured by using standard camera-based techniques, e.g., 

VICON [7] which though powerful, suffer from portability 

issues, high cost, line-of-sight issues, etc. 

Given the importance of joint angle estimation and the need 

to have portable, wearable sensing to facilitate human gait 

analysis in free-living conditions, research had been focused 
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on using Inertial Measurement Units (IMUs), Ultrasonic 

sensors, Goniometers, etc. However, the IMU-based systems 

suffer from drift problems, the Ultrasonic sensors entail 

considerable power consumption and Electro-Goniometers 

may not be suited for real-time measurement [6]. In this paper, 

we introduce a novel wearable system for estimation of knee 

flexion/extension angle during one’s gait. Our system 

consisted of a pair of shoes with instrumented insoles and 

knee flexion/extension recorder unit having bend sensors 

(thereby overcoming the issues faced by the other sensing 

mechanisms). In addition, here we used Coefficient of 

Variation [4] for estimating the variability in one’s gait in 

terms of variability in the knee flexion/extension angle while 

walking overground, as indicator to the risk of fall. 

 

II. SYSTEM DESIGN 

Our system comprised of (A) Instrumented Shoes, (B) 

Knee flexion/Extension recorder, and (C) Waist Belt mounted 

Central Module. 

A. Instrumented Shoes 

A pair of shoes having Insoles impregnated with Force 

Sensitive Resistors (FSR henceforth) was used for recording 

gait events (e.g., heel-strike, toe-off, etc.). Here, we have used 

0-445 N FSR (FlexiForce A201; from Tekscan) with an active 

diameter of 9.53 mm. The FSRs were placed at the toe, lateral 

and medial heel locations of each Insole (Fig. 1) to 

accommodate any possible foot inversion/eversion. The 

Insoles were calibrated with VICON (from Vicon Motion 

Systems Ltd.). For details, please see [8]. The analog signal 

(0-5V) from each FSR along with time stamping was acquired 

by a Central module (described below). 

 
Fig. 2.  Knee Flexion/Extension Recorder. Note: ‘L’= 4.5inch. 
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Fig. 1.  Instrumented Shoes with Insoles. 
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B. Knee Flexion/Extension Recorder Unit 
 

This unit had commercially available 4.5” bend sensor 

(from Spectra Symbol) positioned in the knee cap, adjustable 

with Velcro belts (Fig.2) for each leg. We calibrated the bend 

sensor (for details, please see Section III). The analog signal 

(0-5V) from the bend sensor along with time stamping was 

acquired by the Central module (described below).  
  

C. Waist Belt Mounted Central Module 

The Central Module (mounted on a Waist Belt) comprised 

of (i) Microcontroller (ATMEGA 2560), and (ii) Data Storage 

unit. This Module was used to acquire the time-stamped data 

from the Insoles (followed by 10-bit Analog-to-Digital 

conversion) and Knee flexion/Extension Recorder Unit. This 

data (along with shoe ID (namely, ‘left’ and ‘right’)) was 

routed to a 64 GB SD card (from SanDisk Ultra) Data Storage 

unit for subsequent offline analysis of knee joint 

flexion/extension corresponding to heel-strike and toe-off 

events (Figs. 3 (a) and (b)).  

C.1 Extraction of Heel-strike Event 

We wanted to understand one’s knee flexion/extension 

during the heel-strike with the base of support, since the initial 

loading with heel-strike is an important contributor to the 

bipedal stability [9]. The earliest valid peak (magnitude above 

a pre-selected threshold, chosen based on a pilot study) 

recorded by any of the FSRs placed at lateral and medial heel 

locations of left (L) and right (R) legs was used to extract the 

heel-strike information (‘L+’ and ‘R+’ (Fig. 3 (b)).  

C.2 Extraction of toe-off Event  

We also wanted to understand one’s knee flexion/extension 

during the toe-off event, important for maintaining balance 

[10] during gait, that in turn can determine the risk of fall. The 

toe-off event (‘L-’ and ‘R-’ for left and right legs, respectively 

(Fig. 3 (a))) was identified by finding the valley point of the 

toe FSR data (represented by ‘*’) immediately following the 

valid peak representing the heel-strike event (Fig. 3 (b)). 

C.3 Extraction of Swing Phase 

      We were interested to study how the knee 

flexion/extension angle varied during the swing phase. This is 

because, one’s gait pattern in the swing phase is an important 

indicator to postural balance and risk of falls [10]. Our system 

was used to record the swing phase of each leg (‘SL’ and ‘SR’ 

for left leg and right leg, respectively (Figs. 3 (a) and (b))) by 

computing the time interval between the ipsilateral toe-off 

and heel-strike events, during which the limb is not in contact 

with the base of support [11]. 

III. METHODS 

A. Experimental Setup 

      Our study was conducted in Phase I (Calibration Phase of 

bend sensor (Section II.B)) and Phase II (Task Phase). The 

Phase I consisted of a stepper motor-hinge setup with motor 

driver, Arduino, a voltage divider (formed by 10KΩ fixed 

resistor and bend Sensor) and 5V regulated source. The setup 

comprised of a door hinge with one leaf of the hinge (moving 

arm; Fig. 4) connected to the shaft of a stepper motor and the 

other leaf being kept fixed (fixed arm). The Bend sensor was 

then pasted on the leaves of the hinge across the knuckles and 

care was taken that the bend sensor had 00 bend at the initial 

position. Also, the position of the sensor was adjusted to 

enable studying the sensor output with varying bend positions 

(Cases 1-3; Table I) with the pin out end (of bend sensor) 

being placed on the fixed arm. An Arduino-based code was 

used to achieve a step size of 1.80 of the stepper motor.  

The Phase-II used (i) a pair of Instrumented shoes, (ii) pair 

of Knee Flexion/Extension Recorder units, (iii) 60 fps 

camera, and (iv) 10m overground pathway (with ‘START’ 

and ‘STOP’ lines) (Fig. 5 (a)). The pathway was of 2 types 

based on turn angle e.g., (a) Path0 for 00 (i.e., Straight), and 

(b) Path180 for 1800 turning angle (Fig. 5 (b)). 

B. Participants 

Four healthy participants (Table II) were recruited from the 

neighborhood for taking part in Phase II of the study. 

Inclusion/exclusion criteria were (i) age between 18 and 90 

years, (ii) able to walk independently for 10 m, (iii) can 

understand instructions from the experimenter, (iv) did not 

have any recent major surgery and (v) Falls Efficacy Scale 

(FES henceforth) [12]<70. Higher FES scores (for P3 and P4 

than P1 and P2) indicate increased proneness to risk of fall. 

TABLE I 

 BENDING POSITION DISCRIPTION 

Case Location of Bend 

1  ¼*L 

2 ½*L 

3 ¾*L 

Note: ‘L’ represents length of bend sensor i.e., 4.5”. 

 

TABLE II 

PARTICIPANTS’ CHARACTERISTICS 

ID Gender Age (Years)        FES Score 

P1 M 25 10 

P2 M 34 10 

P3 M 64 28 
P4 M 73 22 

Note: FES Score- Falls Efficacy Scale Score [12] 

 

 
Fig. 3. Extraction of Gait Events, namely (a) Toe-off and (b) Heel-strike 

Note:‘SL’ and ‘SR’ represent swing phase for left and right leg respectively. 

  
Fig. 4. Calibration Setup for Bend Sensor. 
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The study had Institutional ethical clearance (Approval No.: 

IEC/2014-15/2/UL/003). 

C. Procedures 

The procedures used during Phases I and II are discussed. 
 

C.1 Procedure of Phase I 

      The Phase I was used to calibrate the bend sensor for 

varying bending angles (with the bending angle gradually 

increased in both clockwise (CW henceforth) and 

anticlockwise (ACW henceforth) directions about the 

bending location (Table I) with three trials for each Case. The 

range of bending angle was typically chosen as 0°to~100°. 
 

  C.2 Procedure of Phase II 

      The Task Phase (Phase II) required ~20 min from each 

participant. The study began with an introduction to the 

experimental setup. Also, the experimenter told that one was 

expected to walk overground on the Path0 and Path180 at 

his/her self-selected speed. Then the consent signing was 

administered. One was free to discontinue at any time if 

uncomfortable. Again, the fear of falling was assessed using 

the FES questionnaire [12]. The FES asks participants to rate 

their confidence on a 1-10 scale (higher scores indicate 

greater fear of falling) while performing ten daily living 

activities. Then the experimenter helped the participant to 

wear the Instrumented shoes, Knee Flexion/Extension 

Recorder Unit (with bend sensor on the kneepit), and the 

Waist Belt (Fig. 5 (a)). The participant was asked to stand 

with both legs touching the ‘START’ line (Fig. 5 (b)). A 

camera was used to record the video of one’s walk for 

subsequent offline analysis. To synchronize the Central 

Module (on the Waist Belt) with the camera, one was asked 

to make three taps on the ground with any leg before starting 

to walk and then walk upto the ‘STOP’ line.  

D. Computation of Coefficient of Variation as Indicator to 

Risk of Fall 

     Literature review shows that increased variability in one’s 

gait can be indicative of higher risk of fall [3]. Such variability 

can be captured in terms of the Coefficient of Variation (CV). 

The CV is often used as a valuable measure for assessing the 

risk of falls in the elderly [3]. We computed the CV of the 

knee flexion/extension angle during heel-strike, toe-off and 

Swing Phase using Eq. (1). 

 

    𝐶𝑉 =
𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑀𝑒𝑎𝑛
∗ 100                           (1) 

IV. RESULTS  

While conducting our study in two Phases, namely Phase I 

and Phase II, we wanted to (i) calibrate the bend sensor 

(before using it to measure one’s Knee Flexion/Extension 

angle) and (ii) understand the feasibility of our wearable 

system to quantify one’s risk of fall. Also, we collected the 

participants’ thoughts on the usage of our system. 

A. User Feedback 

      After the participants completed the task of walking 

overground on the Path0 and Path180 (Section III) while using 

our system, the experimenter administered a post-study 

survey. A questionnaire was framed to know the participants’ 

impressions while walking having worn (i) the waist belt, (ii) 

Instrumented shoes and (iii) the Knee Flexion/Extension 

Recorder unit. All of the participants told that the waist belt 

seemed light. None of them faced any inconvenience while 

walking with the shoes and the knee cap-based unit. 

B. Calibration of the Bend Sensor 

     In this we were interested to understand (a) whether the 

bend sensor output (analog output) changed linearly with 

bending angles (applied using the stepper motor-hinge setup 

(Section III)) and (b) the repeatability of the bend sensor 

output when bent in CW and ACW directions (Section III). 

The bend sensor output changed linearly (R2 =~0.99) with the 

bending angle with Fig. 6 showing the output for Case 2. To 

understand the repeatability of the bend sensor output for 

ACW and CW, we computed the Pearson correlation 

coefficient [13] between the data points and found the 

coefficient to be >0.98 for each of the Cases 1-3. 

C. Variation of Knee Flexion/Extension Angle for each 

Participant as Indicator of Risk of Fall 

    Here we present the Coefficient of Variation (%CV) of the 

knee flexion / extension angle of each participant, P1 to P4 

during heel-strike, toe-off and swing phase while they walked 

overground on Path0 and Path180. It can be seen from Fig. 7 

that irrespective of the heel-strike, toe-off and swing phase of 

gait, the %CV of the knee flexion/extension angle increased 

with increase in participants’ age, possibly inferring 

increasing proneness to fall with age, that is in line with 

literature [14]. In addition, increased pathway turn angle led 

to increased variation in the knee flexion/extension angle 

particularly for the elderly participants. In fact, these 

variations were found to be lower for P1 

(%Change=%∆=3.43, 0.77 and 0.47) and P2 (%∆=3.83, 1.26 

 

 

Fig. 6. Bend sensor output for different bending angles (for Case 2). 
 

 

 

 
(a) 

 
(b) 

Fig. 5. (a) Back view of a person during Phase II (b) 10m overground 

pathways with (i) Path0 and (ii) Path180. 
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and 0.98) than that of P3 (%∆=11.51, 9.07 and 8.46) and P4 

(%∆=12.5, 12.28 and 14.13), respectively during heel-strike, 

toe-off and swing phase. This variability may infer that the 

risk of fall increases with increase in the pathway turning 

angle, particularly in the elderly who are more prone to falls 

[15]. Our findings are also in line with the FES scores (Table 

II) with P3 and P4 showing lesser confidence than P1 and P2. 

Though the FES score of P4 (the eldest of the group) was 

lesser (by 6 units on a 1-100 scale) than P3, our results showed 

higher gait variability of P4 than that of P3 indicating P4 to 

be at a higher risk of falling than P3. Such discrepancy in the 

FES scoring may be possibly attributed to the subjectivity 

while responding to the FES questionnaire.  

V. DISCUSSION AND CONCLUSION 

     Here, we presented the design of a wearable Knee 

Flexion/Extension Recorder system comprising of a bend 

sensor that can quantify one’s knee flexion/extension angles 

and can be used as an indicator of one’s risk of fall. We 

conducted a study in two phases, namely Phase I (Calibration 

Phase of bend sensor) and Phase II (Task Phase). The findings 

of Phase I showed that the bend sensor output changed 

linearly with bending angle and was repeatable. The results of 

Phase II indicated the feasibility of the Knee 

Flexion/Extension Recorder system to quantify one’s risk of 

fall that increases with one’s age and increase in pathway 

turning angle. Although, our findings were promising, yet our 

study had limitations. One of the limitations was the restricted 

sample size. In future, we plan to enroll a larger participant 

pool belonging to different age groups. Again, only a limited 

number of pathway turning angles (00 and 1800) was used in 

our study. In future, we want to include pathways having a 

larger number of turning angles. Also, pathway contour 

(uphill and downhill) can be a contributor to falls. In future, 

we plan to incorporate various pathway contours in our study 

and quantify the risk of fall with our system. Notwithstanding 

the limitations, our study offers a stepping stone towards 

understanding the potential of a wearable technology to 

quantify one’s risk of fall under varying walking conditions.   
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Fig. 7. CV of knee flexion/extension angle while walking on Path0 and 

Path180 during (a) Heel-strike (b) Toe-off (c) Swing phase. 
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