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Abstract— Electrical impedance tomography (EIT) of the 

head has the potential to provide rapid characterization of brain 

stroke. This study builds on previous work by implementing a 

more anatomically complex head model, contrasting results of 

bleed and clot simulations, and by establishing the electrodes 

which dominate in voltage difference measurements. This work 

provides the basis for machine learning with clusters of small 

numbers of electrodes as unique features for stroke-type 

detection and differentiation.  

 
Clinical Relevance— This application of EIT can aid in early 

detection, classification, and localization of brain stroke, 

allowing for faster treatment. 

I. INTRODUCTION 

Stroke is one of the most common causes of death 
worldwide [1]. Almost 800,000 Americans have a stroke each 
year [2], and as a result stroke is a leading cause of morbidity 
and serious long-term disability [2].   

Early identification of a stroke is pivotal to successful 
treatment. The treatment approach depends on the cause of 
the stroke (as a bleed or clot), and therefore it is important to 
differentiate the root cause as quickly as possible. Current 
approaches typically include magnetic resonance imaging 
(MRI) or computed tomography (CT) scans upon arrival at 
the hospital. However, electrical impedance tomography 
(EIT) has been proposed as a complementary modality [3] 
that could enable differentiation of stroke type in the 
ambulance, leading to faster triage at the hospital and faster 
delivery of therapies. Earlier delivery of treatment leads to 
increased survival rates and decreased morbidity rates [2].  

EIT is a low-cost, non-invasive imaging modality [4], that 
has potential to discriminate between stroke types based on 
the changes in impedances (or conductivities) of tissues in the 
head resulting from each type of stroke [3]. To date, EIT for 
stroke detection and differentiation has shown great promise 
with work in [3], [5], and [6] specifically using machine 
learning-based approaches to classify stroke type. Many 
variables have already been considered, but there are still a 
number of other factors which can impact the practical 
reliability of this technology. Additionally, further work in 
developing a more anatomically accurate model strengthens 
the credibility of the proposed use of EIT. Therefore, 
presented in this work is a study of which electrodes in an EIT 
stroke detection system dominate in voltage difference 
measurements depending on the location and type of stroke. 
Additionally, the highly conductive layer of cerebrospinal 
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fluid (CSF) between the meninges and the brain is included in 
this simulation model to analyze its impact on the EIT 
measurement data. Finally, multiple lesion locations, sizes, 
and conductivities representing both bleed and clot cases are 
modeled, with the most informative results presented in this 
article. 

II. METHODOLOGY 

In this section, the model of the head and lesions are 

described. Then, the simulation set-up is detailed. Lastly, the 

applied analysis of the resulting data is overviewed. 

A.   Modeling of the Head and Lesions  

The baseline model used in this study is a simplified but 
anatomically accurate three-layer head model consisting of an 
outer layer of skull and skin aggregate, a middle layer of CSF, 
and an inner volume of brain tissue aggregate. This baseline 
model is also compared with a simple two-layer model that 
does not contain the layer of CSF, in order to compare the 
results. The head and brain models were initially derived from 
MRI images [7] and were obtained for this study from the 
open source data available at [3] (in the form of 
stereolithography (STL) files). The model volumes are 
reduced by 41% from their realistic dimensions [3] to improve 
computation times and our later ability to fabricate the model. 
The model volumes are provided in Table I. 

In the three-layer model, the CSF layer is subtracted from 
the skull layer, with the brain volume remaining the same in 
both cases with and without CSF. The CSF layer is 
approximately 5 mm in thickness (3 mm in the model), 
consistent with the average thickness of CSF [8], though CSF 
thickness varies widely throughout the cranial cavity. We note 
that the conductivity of CSF has been reported across a range 
of values, e.g., 1-2.5 S/m [9]. Here we choose the lower limit 
as the best-case (lowest loss) scenario.  This decision was 
made to show the importance of CSF modeling, as it is 
expected that even in the best case scenario, the added CSF 
layer will have a significant impact on the voltage data. 

TABLE I. CHARACTERISTICS OF EACH TISSUE TYPE INCLUDED IN THE HEAD 

MODELS. 
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Tissue Type 
Conductivity 

(S/m) 
Model 

Volume (mL) 
Realistic 

Volume (mL) 

Skull/skin aggregate 0.1 1972 3343 

CSF 1.0 122 206.5 

Brain aggregate 0.3 773 1310 

Bleed 0.7 5.9-17.7 10-30 

Ischemic 0.1 5.9-17.7 10-30 
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Figure 1. Example image of a head model with a lesion in the right 

hemisphere of the brain, and a diagram of model layers including the 8 lesion 

locations, 2 lesion volumes, and the 16 electrodes labeled. 

In total, six different head models were generated, each 
with different relative sizes of the layers of the head model. 
With each of these head models, eight lesion variations were 
compared to the normal case. However, results from only one 
of these variations is presented as the variations all resulted in 
the same trends in terms of lesion detection. 

To simulate a lesion produced by stroke in the brain, a 
sphere is placed in the brain volume of each model, and its 
conductivity is changed to represent a bleed (hemorrhagic 
stroke) or ischemic tissue (ischemic stroke, caused by a clot). 
Four lesion locations, at the front, back, right, and left sides 
of the head are studied, along with two lesion sizes in each 
location: 10 mL, and 30 mL. Simulated measurements of this 
model are compared to those of the non-lesion case, which is 
referred to as the ‘normal’ or ‘healthy’ case throughout this 
discussion. 

The conductivities used for each tissue are provided in 
Table I. These values are based on those from [3], [9], and are 
representative of the properties at 50 kHz. Although other 
frequencies may also be of interest, 50 kHz is a common 
frequency point from past EIT studies and is conveniently 
available in commercial EIT measurement systems (e.g., the 
Swisstom Pioneer set) [3]. An example image of the head 
model with layers and lesion sizes and locations marked is 
shown in Fig. 1. 

B.   Simulation Set-up  

The STL files are meshed into a finite element model 

(FEM) using EIDORS [10] with Netgen [11] and Gmsh [12], 

and a ring of 16 electrodes is meshed around the outer layer 

of the model with the mesh appropriately refined where the 

electrodes make contact [13]. EIDORS simulates the injection 

of current based on the head models and forward solves to 

find the expected voltage measurements across pairs of 

electrodes. In each measurement, there are four electrodes 

involved: the two electrodes serving as the current injection 

pair and two electrodes for each voltage measurement. This 

measurement is repeated with all other electrode pairs serving 

as the current injection pair using a skip-two configuration 

[14]. The resulting voltage data can then be used to infer the 

conductivity distribution of the region, or changes in the 

conductivity distribution of the region. 

For each unique head model, the voltage measurements 

are simulated over 250 trials with a pre-configured signal-to-

noise ratio (SNR) that determines the amount of random noise 

that is added in the simulated measurements. SNRs from 20 

to 120 dB are investigated and presented in Section III.A. 

C.   Description of Analysis of Dominant Contributors 

The difference between the lesion cases and the healthy 

non-lesion cases is calculated to demonstrate the deviation 

from the baseline voltage measurements when a lesion is 

present in the brain. The mean and the standard deviation of 

this difference across 250 repeated simulations are calculated 

for each measurement/injection electrode pair (defined as one 

measurement ‘channel’) for both the bleed case and clot case 

and across the different head models and lesion sizes. The 

mean of the differences is plotted in Fig. 2 for an example 

case of a 30 mL lesion on the right side of the head (results 

for both bleed and clot are provided), where the area within 

one standard deviation from the mean is shaded. The 

electrode position combinations are the measurements in 

sequential order. For example, in Fig. 2 and Fig. 3, position 

‘1’ corresponds to current injection pair 1-4, measurement 

pair 5-2; position ‘2’ corresponds to 1-4, 6-3; and so forth. 

While each voltage measurement is a discrete point, they are 

interpolated and plotted as a continuous line to improve the 

readability of the plots. 

For the purposes of this work, the dominant contributors 

are defined as the measurement and injection electrode pairs 

(i.e., the channels) that are the most essential for lesion 

detection and differentiation. The dominant contributing 

Figure 2. Mean (solid trace) and standard deviation (shaded region) of voltage differences between lesion and normal head models: for bleed (red traces) 

and for clot (blue traces). The voltage differences are shown for five noise levels: 20 dB, 40 dB, 60 dB, 80 dB, and 100 dB. (The 120 dB case is not shown, 

as it appears visually identical to the 100 dB case.) The plots are for the scenario of a 30 mL lesion, on the right side of the head. 
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electrodes are extracted from the simulated voltage 

measurements. For each unique head model, the absolute 

difference between the voltage measurements of the lesion 

case and normal case is calculated. Of these absolute 

differences, the five electrode position combinations that 

observed the greatest difference in voltage measurement from 

the normal case are noted for each repetition of the simulation.  

The schematic of the head model in Fig. 1 shows the 

position of all 16 electrodes and their orientation, in addition 

to the approximate location and size of the lesion. In the head 

plots shown in Fig. 4 and Fig. 5, the current injecting 

electrodes are connected by a solid line, while the voltage 

measuring electrodes are indicated by a dashed line from the 

midpoint of the associated solid line to each measuring 

electrode. Each time an electrode combination is repeated in 

another simulation’s dominant contributors, the thickness of 

the lines is increased. Therefore, thicker lines represent the 

electrode position combinations that more frequently occur in 

the top 5 most dominant contributors. 

III. RESULTS 

In this section, the voltage difference data and the 

dominant contributing electrodes are analyzed. Then, the 

effect of including CSF in the head models is investigated.  

A.  Voltage Data 

In this section, all results reported are those from head 

models that include the CSF layer. As expected, the 

magnitude of the simulated voltage difference between the 

normal and the bleed or clot case is the greatest in electrode 

combinations that are nearest to the lesion. This pattern is 

consistent for all head models and lesion locations. However, 

the head model and the location of the lesion have a minimal 

effect on the shape and the magnitude of the voltage 

differences. Similarly, the size of the lesion negligibly affects  

Figure 3. Mean and standard deviation (which is too low to be visible) of 

voltage differences between lesion and normal head models. The voltage 
differences are shown for two sizes of lesion: 30 mL and 10 mL, both on the 

right side of the head. The SNR is 120 dB for both graphs. 

the shape of the voltage difference plot, but smaller lesions 

result in a smaller voltage difference than larger lesions as 

expected. 

SNR contributes to the variability in the voltage 

differences. As SNR increases, the shaded area between one 

standard deviation above and below the mean decreases. At 

an SNR of 20 dB, the voltage difference is nearly undetectable 

due to the high variability of the measured signal. At 40 dB, 

the difference pattern is more noticeable, though reliability 

may be limited in more complex scenarios. However, at SNRs 

of 60 dB and above, a strong pattern is detectable which tends 

to correlate directly with the conductivity of the added lesion. 

To better gauge the efficacy of measuring lower SNRs, the 

raw voltage data may be analyzed by machine learning (ML) 

in future work to identify subtle patterns. 

For the same lesion size and location in a particular head 

model, the electrode combinations that result in a positive 

difference for the bleed case generate a negative difference in 

the clot case and vice versa, creating voltage difference plots 

that approximately mirror each other. As bleeds are more 

conductive than brain while ischemic tissue is less conductive 

than brain, these results align with expectations. 

B.   Dominant Contributors  

In the test cases, the electrodes nearest the lesion 

consistently detect the greatest deviation in voltage from the 

healthy case, and it is these channels which are classified as 

the dominant contributors for each trial. The dominant 

contributors tend to occur where measurement electrodes 

intersect the path between the current injection electrodes.  

These patterns in the dominant contributors (given that the 

SNR is high enough to accurately detect the lesion) are 

consistent for both bleed and clot cases, with similar electrode 

combinations detecting the greatest change given the same 

Figure 4. Plot of dominant contributors, for 30 mL size bleeds at four different 

locations in the head (for SNR of 120 dB).  
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Figure 5. Plot of dominant contributors, for 30 mL size clots at four different 

locations in the head (for SNR of 120 dB).  

 

head model, lesion location, and lesion size. Similarly, the 

size of the lesion and the head model used do not play a major 

role in the resulting dominant electrodes. 

C.  CSF vs. no CSF 

Generally, the inclusion of the CSF layer minimally 

changes the shape of the voltage difference plot, as shown in 

Fig 6, and similarly for the dominant contributing electrodes. 

However, including the CSF scaled down the magnitude of 

the majority of the voltage difference by approximately 25%.  

Similar trends are found for both lesion types and across 

the lesion sizes and positions. Though the inclusion of CSF 

does not greatly change the shape of the signal, the attenuation 

of the signal is significant enough that it is important to 

consider the CSF layer in the model to make the loss more 

realistic, as it will impact feasible detectability. However, the 

model assumes the CSF layer to be of approximately constant 

thickness outside the perimeter, which is not realistic. Despite 

this limitation, since the same CSF layer is used in both 

healthy and non-healthy cases, it is expected that correcting 

this limitation will have a minimal effect on the data.  

Figure 6. Plot of mean voltage difference with and without CSF: for a bleed 

(red trace, for bleed located on right side of head); and a clot (blue traces, for 

clot located on left side of head). Both lesions are 30 mL in size, simulated 

with an SNR of 120 dB. 

 

IV. DISCUSSION AND CONCLUSIONS 

In this work, we have shown that the channels with 

electrodes nearest the lesion consistently detect the greatest 

difference from the normal case across various head models, 

lesion sizes, lesion locations, and SNRs. If only few 

electrodes contribute prominently to the detection of the 

lesion, then future work could investigate using groups of 

small arrays instead of a 16-element electrode array, thereby 

decreasing the amount of required circuitry, memory storage, 

and cost.  Additionally, a hemorrhagic stroke and an ischemic 

stroke result in opposite differences from the normal case, 

thereby demonstrating that EIT has promising results in the 

differentiation of stroke types, given an SNR of 60 dB or 

higher for accurate detection. Future work includes machine 

learning classification, improvements in the accuracy of the 

head models, considering intra- and inter-individual 

variability in parameters, and further differentiation of stroke 

types and locations.  
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