
  

 

Abstract— Neuropsychiatric disorders such as schizophrenia 

are very heterogeneous in nature and typically diagnosed using 

self-reported symptoms. This makes it difficult to pose a 

confident prediction on the cases and does not provide insight 

into the underlying neural and biological mechanisms of these 

disorders. Combining neuroimaging and genomic data with a 

multi-modal ‘predictome’ paves the way for biologically 

informed markers and may improve prediction reliability. With 

that, we develop a multi-modal deep learning framework by 

fusing data from different modalities to capture the interaction 

between the latent features and evaluate their complementary 

information in characterizing schizophrenia. Our deep model 

uses structural MRI, functional MRI, and genome-wide 

polymorphism data to perform the classification task. It includes 

a multi-layer feed-forward network, an encoder, and a long 

short-term memory (LSTM) unit with attention to learn the 

latent features and adopt a joint training scheme capturing 

synergies between the modalities. The hybrid network also uses 

different regularizers for addressing the inherent overfitting and 

modality-specific bias in the multi-modal setup. Next, we run the 

network through a saliency model to analyze the learned 

features. Integrating modalities enhances the performance of the 

classifier, and our framework acquired 88% (P < 0.0001) 

accuracy on a dataset of 437 subjects. The trimodal accuracy is 

comparable to the state-of-the-art performance on a data 

collection of this size and outperforms the unimodal and bimodal 

baselines we compared. Model introspection was used to expose 

the salient neural features and genes/biological pathways 

associated with schizophrenia. To our best knowledge, this is the 

first approach that fuses genomic information with structural 

and functional MRI biomarkers for predicting schizophrenia. 

We believe this type of modality blending can better explain the 

disorder's dynamics by adding cross-modal prospects.   

 
Clinical Relevance— This study combinedly learns imaging 

and genomic features for the classification of schizophrenia. The 

data fusion scheme extracts modality interactions, and the 

saliency experiments report multiple functional and structural 

networks closely connected to the disorder.  

I. INTRODUCTION 

Schizophrenia (SZ) is a severe neuropsychiatric disorder 
that manifests with various biological and neural alterations 
[1]. In general, SZ identification is symptom-based and 
primarily dependent on the self-acknowledged behavioral 
syndromes of a subject. As such, the diagnosis gets intricated 
by the heterogeneity in the patient’s psychological state, lack 
of reliable information from the subject, and dichotomy in 
clinical trials [2-4]. The complication extends further because 
the outcomes and effects of this health trait overlap with other 
psychiatric and neurodegenerative disorders [5]. 

 
 

Neuroimaging can aid schizophrenia research by providing the 
opportunities of building biomarkers from mechanistic 
investigations of the structural and functional profile of the 
healthy and diseased brain. However, generating reliable 
biomarkers is an extensive research avenue in neuroscience. 
Currently, genomic data has been showing great potential in 
predicting schizophrenia[6, 7]. Besides, studies reported a 
strong association between the genetic risk factor of 
schizophrenia and brain functional and structural changes [8, 
9]. Also, Chen et al. suggest shared genetic risk in 
schizophrenia and gray matter reduction [10]. Intuitively, 
compounding genetic and neuroimaging information is 
promising and might complement each other to characterize 
schizophrenia.              

Deep learning (DL) based studies have reported significant 
improvement in schizophrenia classification accuracy over the 
years [11-16]. However, besides the high accuracy, the models 
provide minimal insights into the associated neural 
components, effects, and reasoning. Multi-modal deep 
learning potentially enhances the robustness of inferences 
made from a DL model for a learning task that can explain 
distinct aspects of a system under investigation [17, 18]. 
Qureshi et al. used multi-modal integration of structural 
magnetic resonance image (sMRI) and functional resonance 
image (fMRI) for enhancing the accuracy of schizophrenia and 
healthy control (HC) classification [19]. The study used a 
relatively small sample (SZ: 72, HC: 72)  and applied the ML 
model on global connectivity features from specific brain 
regions. More studies performed multi-modal SZ 
classification, which is mostly confined to imaging modalities 
only [20-22]. Here, we use sMRI, resting fMRI and, genome-
wide single nucleotide polymorphism (SNP) data in a deep 
learning framework to characterize the disorder. We use 
independent component analysis (ICA) [23, 24] to decompose 
fMRI and sMRI scans into independent component features, 
which are further analyzed by a DL model with SNPs for 
learning the shared feature subspace. Modality fusion 
improves the classification accuracy, and the saliency model 
extracts highly discriminative features for characterizing 
schizophrenia. We observe a set of structural subdomains, 
including caudate, anterior cingulate & medial prefrontal, 
inferior and mid frontal gyrus, and calcarine, that have 
contributed strongly to the classification. Also, the saliency 
experiment reports several static functional network 
connectivity (sFNC) pairs that show substantial association in 
identifying the disorder. Moreover, the SNPs extracted from 
genomics data highlight well-documented SZ-related genes 
and pathways.  
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II. DATA PREPROCESSING 

A. Structural MRI  

We preprocessed the sMRI data using statistical parametric 

mapping (SPM12, http://www.fil.ion.ucl.ac.uk/spm/) under 

MATLAB 2019 environment for all three datasets. We 

segmented the structural images into gray matter, white 

matter, and CSF using modulated normalization algorithm, 

resulting in outputs as gray matter volume (GMV). Next, the 

GMV was smoothed using a Gaussian kernel with a full width 

at half maximum (FWHM) = 6 mm. More details about the 

preprocessing steps of sMRI and fMRI images are described 

in prior work [25].  

B. Functional MRI  Specifications 

 The fMRI data were preprocessed using the SPM12 

toolbox too. The first five time points of the fMRI scans were 

discarded to guarantee that the magnetization achieves a 

steady state. A rigid body motion correction was performed 

to correct subject head motion, followed by the slice-timing 

correction to account for timing difference in slice 

acquisition. The fMRI data were subsequently warped into the 

standard Montreal Neurological Institute (MNI) space using 

an echo-planar imaging (EPI) template and were slightly 

resampled to 3 × 3 ×3 mm3 isotropic voxels. The resampled 

fMRI images were finally smoothed using a Gaussian kernel 

with a full width at half maximum (FWHM) = 6 mm. 

C. Genomics 

 The datasets were quality controlled and imputed 
separately following the pipeline described in our previous 
work [24][26]. Then three datasets were merged and went 
through standard Plink [27] preprocessing. After 
preprocessing, the data were pruned (linkage disequilibrium 
(LD)) at r2 < 0.9. Finally, we conducted feature selection based 
on the PGC SZ GWAS [28], such that the analysis used 1280 
SNPs residing in the 108 risk loci and showing SZ associations 
with p < 1e-4. SNPs were retained with population structure 
corrected using principal component analysis. The details 
about genetic preprocessing are provided in this study [10].    

III. MULTI-MODAL ARCHITECTURE 

Our architecture consists of two major submodules i) 
decomposition of MRI images and genotyping of genomics 
sequence ii) deep neural networks (DNN) to learn multi-
modal features for SZ classification. Figure 1 presents 
different parts of our framework. The DNN incorporates 
three subnetworks to learn the modality features, followed by 
multiple fully connected layers for the prediction. 

A.  Group ICA (using Neuromark pipeline) and genotyping  

In this study, we applied a fully automated ICA-based 
pipeline called Neuromark to extract functional and structural 
networks [29]. Neuromark is a robust analysis pipeline that can 
capture image features while retaining more individual-level 
variability. For fMRI, it uses two large healthy controls 
datasets, the human connectome project (HCP) 
(http://www.humanconnectomeproject.org/) and the genomics 
superstruct project (https://www.nitrc.org/projects/gspdata) to 
construct reproducible spatial priors. Then based on the 
network priors, we applied fully automated spatially 
constrained ICA using the NeuroMark approach to each 
subject from FBIRN [30], COBRE [31], and MPRC [32] 
dataset to estimate individual-level functional networks and 
their time courses. Fifty-three intrinsic connectivity networks 
(ICNs) covering the whole brain were arranged into 7 
functional domains [25, 33]: sub-cortical (SC), auditory (AD), 
sensorimotor (SM), visual (VS), cognitive-control (CC), 
default-mode (DM), and cerebellar domain (CB). More 
information about the spatial maps and the domains are 
included in this study [25]. We calculated the Pearson 
correlation between the time course (TCs) of ICNs, resulting 
in a 53 x 53 sFNC matrix for each subject. We vectorize the 
sFNC matrix using the upper diagonal entries as the functional 
features in our fMRI subnetwork (encoder). Similarly, for 
sMRI, the Neuromark pipeline first extracts reliable ICs that 
are replicated across independent datasets. 6500 subjects from 
this study [34] were randomly divided into two groups for 
estimating the spatial priors. Then the priors were used as a 
reference to extract individual level structural networks and 
 corresponding loadings. Here, 30 structural networks were 
estimated by the infomax algorithm, and this procedure was 

Figure 1. Our multi-modal architecture. It has two 

submodules, i) group independent component 
analysis (gICA) and genotyping ii) Deep neural 

networks (DNN) for learning the modality features. 

The submodule i) runs two separate gICA for sMRI 
and fMRI with distinct settings e.g., number of ICs 

expected. Then it computes the static functional 

network connectivity (sFNC) matrix for each subject 
from fMRI gICA and collects the ICA loading matrix 

from sMRI. Then, the genotyping on the genomics 

sequence generates SNPs. The DNN submodule 
consists of four subnetworks. sFNC features are 

extracted and learned by a compression network  

(encoder). The next subnetwork is a multilayer feed 
forward network (FFN) for learning the ICA loading 

features. For genomics, we use a bi-directional long 

short-term memory (LSTM) unit with attention 
mechanism. After that, a fusion mechanism is applied 

to combine the latent features from three modalities. 

Finally, the joint features are sent through a series of 
fully connected layers followed by SoftMax 

prediction layer. The multimodal losses are back 

propagated across the DNN submodule using 

standard optimization technique .                                               
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repeated 20 times in ICASSO, in which the best run was 
selected to ensure the estimation stability. We used the 
loadings of the structural networks as the sMRI features in the 
classification.  The third modality is based on a set of SNPs 
generated from genotyping data. 

B. Deep learning neural networks  

 We use an encoder network consisting of five fully 
connected (FC) layers to learn low-level features from 
the sFNC matrix. The weights are initialized 
uniformly using the Xavier initialization function 
under the hood of Pytorch [35]. Each layer is followed 
by a dropout layer and sets the probability to 0.2. The 
subnetwork used ReLU [36] activation function.       

 The sMRI subnetwork is a feed-forward network 
(FFN) with five FC layers. The FC layers mostly have 
30 hidden nodes followed by a dropout layer with a 
probability of 0.2 except the last layer. The last layer 
has100 nodes to match up with the latent feature size 
from other modalities.     

 The genetic subnetwork is a bi-directional long short-
term memory (bi-LSTM) unit incorporated with the 
attention mechanism [37]. Although the SNPs data are 
not temporally dependent, the neighboring SNPs are 
more spatially allied than the distant ones. We apply 
light pruning on the SNP data and use bi-LSTM to 
capture these localized semantics which might help 
differentiate the disorder.  

 Prediction model: The final subnetwork stack of three 
fully connected (FC) layers is followed by a SoftMax 
layer. The FC layers have 100 hidden nodes, and the 
dropout is set to 0.2. We determined these parameters 
by running random search hyperparameter 
optimization and nested cross-validation.  

C. Fusion  

We implemented multiple data fusion techniques to 
integrate the latent features from the three subnetworks we 
described earlier, e.g., early, joint, or late fusion of modalities 
for multi-modal learning [38]. Early fusion refers to 
integrating multiple input modalities into a standard feature 
vector [39], late fusion refers to the aggregation of predictions 
from various models [40, 41]. The late fusion technique is 
recommended when signals from different modalities do not 
complement each other, imposing the modality-specific 
subnetwork to contribute separately to the prediction. We run 
late fusion for comparison only. We incorporate joint fusion or 
intermediate fusion that combines the learned feature 
representations from intermediate layers of modality-specific 
subnetworks. We aggregate the latent features from sMRI, 
fMRI, and SNPs as input to the final subnetwork. This helps 
us observing the relation/interaction between features from 
multiple modalities in the post hoc analysis. We use weighted 
concatenation for combining the latent features. The 
aggregation is performed following this equation, 

 u  = [w1h1 (t1),w2h2 (t2), …, wmhm (tm)] (1) 

where h is a modality-specific neural network. We can 
describe it as hm : ℝdm → ℝd   (m represents the modalities,       
m  = 1, ..., M). The joint feature u is defined as u ϵ ℝd. The w’s 

are the learnable scaler for each modality. If the final 
prediction value is p,     

where y is a neural network and is 
described as y: ℝd → ℝc and c is the number of classes.   

D. Multi-modal training  

Our implementation uses a cross-entropy loss and Adam 

[42] optimizer with a learning rate of 1× e-4 and a batch size 

of 36 for training from Pytorch. The Adam optimizer updates 

the weights in the proposed DNN by back-propagating the 

cross-entropy loss computed from the final layer's prediction 

and the subject’s label. The fully connected layers are 

followed by the dropout [42] layer with p = 0.2 to reduce 

overfitting. We also added early stopping for balancing 

between training and validation loss, which eventually 

regularizes the model. The data set is divided into training, 

testing, and validation set. For the validation dataset, we held- 

out 50 (HC: 25, SZ: 25) subject’s data. Next, we run 300 

training epochs and use the 10-fold cross-validation [43] 

method to evaluate the performance of the classifier on the 

remaining data. The cross-validation method randomly 

divides the datasets into 10 equal partitions and uses 9 of them 

to train the model and the remaining one for testing the 

performance. The technique interchanges the training and 

testing set and repeats the process ten times. We implement 

one multi-modal regularization technique for the 

experimental sanity focused on removing bias by maximizing 

functional entropies [44]. However, it does not significantly 

improve overall performance but showed a lower accuracy 

(Table I).           

IV. RESULTS 

A. Experiments and Evaluation  

We selected 437 subjects from 3 different datasets, 
COBRE [31], fBIRN [30], and MRPC [32]. The combined 
dataset has 275 healthy control (HC) and 162 schizophrenia 
(SZ) subjects. Due to heterogeneity in data preprocessing 
and lack of common subjects used in available studies, we 
generate several baselines to compare the performance of our 
proposed multi-modal classification  

Table I.  Our experiments and comparisons with baselines 

# Fusion Type Experiment Accuracy(%) 

1 Unimodal: 
Functional MRI 

Multi-layer feed-forward 
network 

 81 

2 Unimodal: Structural 
MRI 

Multi-layer feed-forward 
network 

78 

3 Unimodal: Genetic 
data (SNPs) 

bi-LSTM with Attention 68 

4 Bimodal (mid) sMRI + fMRI 83 

5 Bimodal (mid) SNPs + sMRI 78 

6 Bimodal (mid)  SNPs + fMRI 81 

7 Late fusion fMRI + sMRI + SNPs 78 

8 Functional 
entropies [44] 

fMRI + sMRI + SNPs 72 

9 Mid fusion fMRI + sMRI + SNPs  88* 

framework. Also, compared the performance for several data 
fusion techniques, including joint fusion, late fusion, 
additive, multiplicative, and a weighted combination of 

 
 p = y (u) (2) 
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latent features. For the saliency experiment on the fully 
trained model, we use the Captum library [45]. Saliency is 

defined as 𝑆𝑐(𝑥) = |
𝜕𝑌𝑐

𝜕𝑥
|, or the gradients of the prediction 

of the correct class with respect to the input. It is a widely 
used method for interpreting neural networks and has been 
shown to be an effective measure under scrutiny [46]. 
Saliency maps are essentially heat maps of each input 
sample, indicating the relevancy of each feature to the 
sample’s true class.  

B. Evaluation 

The performance of the model is evaluated on the True 
positive rate (TPR), false-positive rate (FPR), and accuracy 
(ACC). These terms are defined as, 

 TPR = TP/(TP+FN) 

 FPR = FP/(TN+FP), and  

 ACC = (TP+TN)/(TP+FP+FN+TN).  

Here, TP stands for true positives – no. of SZ subjects 
classified as SZ; FN stands for false negatives: no. of SZ 
classified as HC, TN (true negatives): no. of HC subjects 
classified as HC, FP (false positives): no. of HC classified as 
SZ. Table I shows the accuracy from different models we 
tested on our dataset.  Figure 2 present the Receiver operating 
characteristic (ROC) curves for the models we studied. We 
observe our multi-modal neural network achieved an AUC of 
0.85 and an average accuracy of 88% across all the testing 
folds and outperforms other methods.  

 

Figure 2.  Receiver operating characteristic (ROC) curves and AUC (Area 

under the ROC curve) for all the models we mentioned in Table I. Our 

multi-modal joint fusion model outperforms all other baselines.    

C. Feature interpretation using saliency model.   

For consistency, we calculated the mean of the saliency 
values across the subjects and the folds. From the average 
saliency scores for sMRI features, we observe some of the 
components are showing significantly higher saliency than 
others. We selected the best five out of thirty components for 
further investigation. The components are i). Caudate, ii). 
Anterior cingulate (ACC) and medial frontal cortices (mpFC), 
iii). Inferior and mid frontal gyrus, iv). Precuneus and posterior 

cingulate cortex (PCC), and v). Calcarine. Figure 3 shows the 
mean loading value of these components across HC and SZ 
subgroups. The differences are tested using a two-sample t-test 
for statistical significance and controlled for age, sex, and site. 
Component i, ii, iii, and v show statistically significant HC-SZ 
difference at a 1% significance level and denoted by asterisk  

 
Figure 3. The best five salient sMRI components. The boxplot shows the 

max, min, and median loading values in the SZ and HC groups. We run a 
two-sample t-test to test the statistical significance of  HC-SZ group 

differences. Four components (asterisks) show significant differences at a 

level of 1%. The components are Caudate, Anterior Cingulate (ACC) and 
medial prefrontal (mpFC) Cortics, Inferior and mid frontal gyrus, and 

Calcarine  

sign in figure 3. HC subjects have a stronger representation 

(loading) of components ii, iii, and v than SZ but the weaker 

representation of caudate than SZ. This might have resulted 

from the absence or inadequate presence of these structural 

components (ii, iii, and v) in SZ subjects. Similarly, the 

caudate seems to be having weaker activation in the structural 

MRI of HC subjects. Figure 4 illustrates the mean saliency 

score of each sFNC pair. We print the mean saliency score for 

each pair of components in an sFNC matrix for the fMRI 

features. Figure 4 demonstrates the sFNC matrix annotated 

with saliency.  Value at each cell represents how saliently the 

pair contributed to the prediction. We can observe from the 

left subfigure that the most salient pairs are links to the 

 

Figure 4. The saliency of fMRI features – a pair of static FNC. We plot the 
mean saliency value (across the subjects) in the sFNC matrix. The left one 

illustrates saliency for all the sFNC pairs (1378), and the right one represents 

the 10 best salient pairs. We observe the salient pairs mainly include 
components from the subcortical region; thus, the predominant connectivity’s 

are between subcortical and other domains, e.g., visual (VSN), cognitive 

control (CON), default mode (DMN), etc.  
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Figure 5. The boxplot demonstrates the max, min, and median of static 
functional connectivity strength in the 10 most salient sFNC pairs. The pairs 

are sorted in terms of their saliency score. We run a two-sample t-test to test 

the statistical significance of  HC-SZ group differences. Pair 1, 3, 6, 8, 9, 10  

shown to be statistically significant at a level of 1% (asterisks). 

 subcortical region as shown in the right subfigure. These 
are the 10 most salient pairs (the connection between two 
components). We observe from Table II that most of the pair 
includes at least one component from subcortical networks. 
So, the highly contributing connections are between 
subcortical and other regions of the brain. Moreover, the static  
functional network connectivity strength in those pairs is 
consistently higher in the SZ subjects than HC. In figure 5, we 
are showing the mean connectivity strength in HC and SZ  

subgroups. Six pairs appear to be statistically substantial at a 
significance level of 1%. From the saliency map computed on  
SNPs we select SNPs showing higher importance scores 

across at least 6 folds of cross-validation (total folds = 10). The 
higher importance score indicates a saliency value greater than 
the mean saliency of a particular fold. The salient SNPs are 
annotated to 92 unique genes, and we conducted pathway 
analysis on these genes using David functional analysis tool 
[47]. We noted that there were two clusters of genes involved 
in the dopaminergic synapse (p = 0.03) and postsynaptic 
density (p = 0.008) respectively, both have been well 
documented for SZ [48, 49]. The mentionable involved genes 
in the two significant pathways are the GRIN2A - glutamate 
receptor contributing to the slow phase of excitatory 
postsynaptic current, long-term synaptic potentiation, and 
learning by similarity. CACNA1C is related to calcium 
signaling. GRM3 is also a glutamate receptor; CHRNA3 is the 
cholinergic receptor associated with schizophrenia [50-52]. 

V. CONCLUSION 

We present a multi-modal classification framework for 

sMRI, fMRI, and SNPs data. Our model achieved 0.85 ROC 

with an accuracy of 88% in classifying schizophrenia which 

outperforms contemporary DNN models. Another primary 

goal of our study is to investigate the learned features while 

characterizing the disorder. The saliency maps on the subject-

level features help understand the dynamics, effects, and 

unique aspects of the illness, mainly, how the diseased neural 

system differs from a healthy system. Experimental results 

reported a subset of sMRI, fMRI features exhibiting 

substantial HC/SZ group differences across distinct regions of 

the brain. Moreover, integrating genetic information 

compliment the learning from another modality. We observe 

the unimodal performance of SNPs is lower while blending 

with other modalities enhances the overall performance. In 

addition, two identified pathways are associated with SZ. The 

genes involved seem to regulate the learning process. These 

analytics could be useful in providing additional clues 

regarding the neural mechanisms underlying schizophrenia.  

VI. COMPLIANCE WITH ETHICAL STANDARDS 

Informed consent was obtained from each participant prior to 
scanning in accordance with the Internal Review Boards of 
corresponding institutions.                   
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