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Abstract— Accurate segmentation of optic disc (OD) and
optic cup (OC) can assist the effective and efficient diagnosis
of glaucoma. The domain shift caused by cross-domain data,
however, affect the performance of a well-trained model on
new datasets from different domain. In order to overcome this
problem, we propose a domain adaption model based OD and
OC segmentation called Meta enhanced Entropy-driven Adver-
sarial Learning (MEAL). Our segmentation network consists
of a meta-enhanced block (MEB) to enhance the adaptability
of high-level features, and an attention-based multi-feature
fusion (AMF) module for attentive integration of multi-level
feature representations. For the optimization, an adversarial
cost function driven by entropy map is used to improve
the adaptability of the framework. Evaluations and ablation
studies on two public fundus image datasets demonstrate the
effectiveness of our model, and outstanding performance over
other domain adaption methods in comparison.

I. INTRODUCTION

Glaucoma is a chronic retinal disease and one of leading
causes of blindness. With recent development of fundus
imaging, qualitative and quantitative analysis of morphology
of optic disc (OD) and optic cup (OC), and cup-to-disc ratio
(CDR) have been used in diagnosis of glaucoma, accurate
segmentation of OD and OC in fundus image is an critical
step. Well-trained model often work well on the specific
dataset, and cannot get satisfactory results on cross-domain
data acquired from different scanners or subjects.

To overcome above drawback, unsupervised domain
adaption methods have been exploited. Hoffman[1] and
Javanmardi[2] have tried adversarial learning on domain
adaption to restrict the uncertainty region of medical images.
However, the rough optimization of the segmentation resulted
in failing to get considerable performance. pOSAL[3] pro-
posed an alignment-based approach on basis of adversarial
learning, it simply splice the ResNet and adversarial learning
and its result is not satisfactory. Recently, BEAL[4] improved
the performance of pOSAL by introducing entropy-based
adversarial learning for segmentation. However, the gener-
alizability of the model is not considered.

In this work, we propose a novel unsupervised domain
adaption framework, i.e, meta enhanced entropy-driven ad-
versarial learning (MEAL) for OD and OC segmentation.
Jointly considering accuracy, efficiency and generalization
performance. To improve the accuracy, we propose a novel
meta enhanced multi-feature attention segmentation network
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(MAN) to predict mask. Firstly, attention-based multi-feature
fusion (AMF) is designed to enhance the perception on
boundaries, especially at the soft boundary of OC. Secondly,
we innovatively propose a data enhancement method called
meta enhanced block (MEB) to improve generalization per-
formance and efficiency of the model. To further obtain
better segmented performance on challenging images, we
introduce a entropy-based adversarial learning. Experimental
results and ablation studies show that our model has achieved
improved results on two public datasets RIM-ONE-r3[5] and
Drishti-GS[6].

II. METHODOLOGY

A. Meta Enhanced Block (MEB)

To improve the generalization and efficiency, we propose a
novel meta enhanced block (MEB) inspired by meta-learning
methods[7]. MEB has capacity to reduce overfitting to source
domain and speed up the model converge to target domain.

MEB is composed of meta dataset xa and a meta sub-
network. Here, meta dataset consists of three different fundus
image datasets (ORIGA, MESSIDOR and DRIVE) called
3-way where a way means each fundus image dataset and
each way has 5 fundus image samples, called 5-shot. The
meta sub-network consists of four convolutional layers for
feature extraction, in which the first two layers are followed
by pooling operation and the latter two layers have not
pooling. In detail, since different fundus image datasets come
from different devices, the key to solving the cross-device
problem is to solve the low-dimensional pixel differences.
The combination of MEB and AMF module can effectively
improve the universality of the model. Given fundus images
belong to different way of xa, they were fed in each branch
separately and processed by the meta sub-network. Then,
these features are concatenated together to generate meta
enhanced feature fm. Compared with traditional artificial
noise[8], MEB can get more detail of morphology of OC
and OD, which can predict more reliable mask to accelerate
model converging.

B. Attention-based Multi-feature Fusion (AMF)

Inspired by Attention U-Net[9], we design a novel AMF
to integrate MEB features, low-level and high-level semantic
features into the network. Firstly, high-level semantic fea-
tures fh and MEB features fm are reshaped to half size by
1×1 convolution before concatenation operation. Afterwards,
we apply ReLU activation and Sigmoid to generate attention
weight α, and then multiplied with fh by α to obtain the
fused feature fα.
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Fig. 1. Illustration of the MEAL domain adaption framework with MAN and entropy-driven adversarial learning. The major components in MAN
include DeepLabV3+ decoder, atrous spatial pyramid pooling (ASPP), attention-based multi-feature fusion module (AMF), and meta enhanced block
(MEB). We firstly train source domain (xs) under supervision. Then, target domain (xt) generates features via trained parameters. Three categories of
features are generated, which are meta enhanced features (fm) from MEB, semantic features enhanced by ASPP (fh), and low-level features (fl) from the
first convolutional layer of encoder. The features are fused with attentional weights by AMF before feeding to a 2-layer decoder for segmentation mask
generation. Entropy-driven discriminator D penalizes the results for the final segmentation.

Fig. 2. Architecture of AMF module. Given multiple features including
high-level semantic features fh, meta enhanced features fm, and low-level
features fl. Input features fh and fm are processed first. Attention features are
generated by analysing both activations and contextual information provided
by the two input features. Then, fh is scaled with attention coefficients
α1 computed in attention block to generate fα. fα and fl repeat the above
operation to get fused feature.

For low-level semantic feature fl, we do same opera-
tion with fα. The final integrated fused feature is obtained
for decoder. The channel attention structure can effectively
integrate pixel-level features obtained from MEB into the
feature map of the source domain. Besides, the accurate
details of the low-level features are extracted and added to
the high-level features as supplement. Compared with the
conventional concatenation approach[10], the proposed AMF

aligns different features with attention weights for effective
extraction and identification of soft boundaries.

C. Loss Function

The segmentation predicted by MAN in the target domain
may suffer from uncertainties on the boundary of OC and
OD. To address this issue, we introduce an entropy-driven
adversarial learning to seek a best estimation[4].

Given a source domain image set IS ⊂ R
H×W×3 along with

ground truth mask YS ⊂ R
H×W×3, and a target domain image

set IT ⊂ R
H×W×3 without ground truth. For each xs ∈ IS,

the prediction mask pm
xs

is generated by MAN. Similarly, the
target domain prediction mask pm

xt
can be generated from

target domain data xt ∈ IT. To realize the entropy-driven
adversarial learning, an discriminator D aligns the entropy
masks between source domain E(s) and target domain E(t).
The loss function for discriminator D is defined as Binary
Entropy Loss (BCE) and formulated as

LD =
1
N

∑
xs∈IS

LBCE(E(xs), 1) +
1
M

∑
xt∈IT

LBCE(E(xt), 0). (1)

where E(x) is entropy mask of prediction mask encoding by
Shannon Entropy as

E(xs) = pe
xs
· log(pe

xs
), (2)

E(xt) = pe
xt
· log(pe

xt
). (3)
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Then, the adversarial loss Le
adv is calculated based on LD as

Le
adv =

1
M

∑
xt∈It

LBCE(E(xt), 1). (4)

Le
adv makes target domain prediction converge to manual

annotation. Total loss Ltatal is composed of supervised
segmentation loss Lseg and adversarial loss Le

adv. Lseg is
formulated as

Lseg = −
1
N

∑
xs∈IS

[ym
xs
· log(pm

xs
) + (1 − ym

xs
) · log(1 − pm

xs
)], (5)

where pm
xs

is the predicted mask, ym
xs

is ground truth. Ltatal is
calculated as

Ltatal = Lseg + λLe
adv, (6)

where λ is an artificial coefficient.

Fig. 3. Visualization of loss functions in our method with different
architectures. The AMF improves the efficiency and precise of model and
MEB further enhances accuracy of framework after 8000 iterations.

III. EXPERIMENTS AND RESULTS
A. Dataset and Pre-processing

To evaluate the performance of our method, we use public
fundus image dataset REFUGE1 as training and validation
dataset of source domain that shot by Zeiss Visucam 500.
Drishti-GS[6] and RIM-ONE-r3[5] are used as target domain
datasets. Drishti-GS is shot through FOV 30° for diagnosing
glaucoma. RIM-ONE-r3 is shot through Nidek AFC210 with
a body of a Canon EOS 5D Mark II.

Region of interest (ROI) of size 512 × 512 centred at OD is
cropped as input. We also perform data augmentation includ-
ing random rotation, flipping, elastic transformation, contrast
adjustment and random erasing as previous work[11][12].

TABLE I
Comparison with other domain adaption approaches.

Methods RIM-ONE-r3 Drishti-GS
DICEcup DICEdisc DICEcup DICEdisc

TD-GAN 0.728 0.853 0.747 0.924
Hoffman et al 0.755 0.852 0.851 0.959

Javanmardi et al 0.779 0.853 0.849 0.961
OSAL-pixel 0.778 0.854 0.851 0.962

pOSAL 0.787 0.865 0.858 0.965
BEAL 0.810 0.898 0.862 0.961

MEAL(Ours) 0.821 0.912 0.870 0.962

1https://refuge.grand-challenge.org/

B. Implementation details

Our module is implemented on PyTorch platform. The
discriminator D is optimized with SGD. Segmentation is
optimized by Adam. The initial learning rate of Adam is
set as 1e-3 and decreased by 0.2 every 100 epochs in total
of 200 epochs. The learning rate of discriminator is set as
2.5e-5.

C. Evaluation metrics and comparison methods

Dice coefficients (DICE) score is used to evaluate OD and
OC segmentation results. DICE is defined as

DICE =
2 × NTP

2 × NTP + NFP + NFN
, (7)

where NTP, NFP, and NFN represent the number of true
positive, false positive and false negative pixels.

Comparison is done with six domain adaption meth-
ods: TD-GAN[13], high-level feature alignment[1], out-
put space-based adaption[2], OSAL-pixel[3], its further im-
proved model pOSAL[3], and BEAL[4]. Results is tabulated
at Table.I.

D. Segmentation Results

The segmentation results of our method and other methods
are shown in Table.I. For RIM-ONE-r3, our model outper-
formed all other methods. Our model achieved the highest
DICE of 0.821 and 0.912 in OC and OD segmentation,
followed by the second-best model BEAL. Particularly, we
achieved 1.1% and 1.3% higher Dice on OC and OD
segmentation than the second-best model on RIM-ONE-r3
dataset. For Drishti-GS dataset, our method achieved the best
DICE of 0.870 on OC segmentation. For OD segmentation,
our model was the second-best with a DICE of 0.962, which
was slightly 0.3% lower than the best model.

Segmentation results on OD and OC by our model and the
second-best BEAL are visualized in Fig.4. As shown, BEAL
resulted in an inappropriate result on ambiguous border and
dark color samples in prediction. Our model achieved better
prediction on the boundary.

E. Ablation Study

TABLE II
Results of ablation study on different components.

Hierarchically fused blocks from: RIM-ONE-r3 Drishti-GS
EAL MEB AMF DICEcup DICEdisc DICEcup DICEdisc

0.779 0.885 0.841 0.951
X 0.800 0.898 0.851 0.960
X X 0.806 0.902 0.856 0.958
X X X 0.821 0.911 0.870 0.962

Our ablation studies are performed to demonstrate the
contributions of the major components in our model. The
results are given in Table.II. Without using EAL, MEB and
AMF modules, the DICE score of OD and OC segmentation
are 0.779 and 0.885 on RIM-ONE-r3, and are 0.841 and
0.951 on Drishti-GS. EAL module improved the DICE score
on OD and OC of RIM-ONE-r3 to 0.800 and 0.898, and
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Fig. 4. Qualitative results on Drishti-GS and RIM-ONE-r3 datasets indicate that our method have a better appearance as shown above. Green and blue
lines on prediction represent OD and OC borders, respectively. Otherwise, entropy maps of images are also shown, which further clearly appeals that our
method is more predominant. The red region in them refers to margin of OD and OC.

those on Drishti-GS to 0.851 and 0.960. The primary reason
is that adversarial learning improves the perception and
segmentation at uncertain boundaries. MEB module further
improved the DICE score of OD and OC to 0.805 and 0.902
on RIM-ONE-r3, the DICE to 0.856 and 0.958 on Drishti-
GS. This is benefitted by MEB enhanced the generalizability
of our framework on cross-domain segmentation work. The
loss functions in Fig.3 further demonstrated the capacity of
MEB to reduce overfitting to source domain and speed up the
loss function converge on the target domain. AMF module
further lifted the DICE score of OD and OC to 0.821 and
0.911 on RIM-ONE-r3, and those to 0.868 and 0.962 on
Drishti-GS dataset. The attentional feature fusion mechanism
adaptively fused the soft boundaries of OC and OD, which
improved the segmentation accuracy. Furthermore, as Fig.3
shown, AMF improved the fitting ability of MEB on the
target domain after 8000 iterations when compared with the
model without using AMF.

IV. CONCLUSION

We proposed a novel meta enhanced entropy-driven ad-
versarial learning for OD and OC segmentation. The meta-
learning based data enhancement module improved the
generalizability of the segmentation network and the at-
tention based multi-feature fusion module improved the
segmentation accuracy, especially at the soft boundaries.
Our model outperformed the other state-of-the-art domain
adaption model. However, we have not tested our model on
other datasets. In future work, our model will be applied to
other tasks in medical image analysis.

References

[1] Hoffman J, Wang D, Yu F, et al. Fcns in the wild: Pixel-
level adversarial and constraint-based adaptation[J]. arXiv preprint
arXiv:1612.02649, 2016.

[2] Javanmardi M, Tasdizen T. Domain adaptation for biomedical image
segmentation using adversarial training[C]//2018 IEEE 15th Interna-
tional Symposium on Biomedical Imaging (ISBI 2018). IEEE, 2018:
554-558.

[3] Wang S, Yu L, Yang X, et al. Patch-based output space adversarial
learning for joint optic disc and cup segmentation[J]. IEEE transactions
on medical imaging, 2019, 38(11): 2485-2495.

[4] Wang S, Yu L, Li K, et al. Boundary and entropy-driven adversarial
learning for fundus image segmentation[C]//International Conference
on Medical Image Computing and Computer-Assisted Intervention.
Springer, Cham, 2019: 102-110.

[5] Fumero F, Alayón S, Sanchez J L, et al. RIM-ONE: An open retinal
image database for optic nerve evaluation[C]//2011 24th international
symposium on computer-based medical systems (CBMS). IEEE, 2011:
1-6.

[6] Jayanthi Sivaswamy, S Krishnadas, Arunava Chakravarty, G Joshi, A
Syed Tabish, et al., “A comprehensive retinal image dataset for the
assessment of glaucoma from the optic nerve head analysis,” JSM
Biomedical Imaging Data Papers, vol.2, no.1, pp.1004, 2015.

[7] Sung F, Yang Y, Zhang L, et al. Learning to compare: Relation
network for few-shot learning[C]//Proceedings of the IEEE conference
on computer vision and pattern recognition. 2018: 1199-1208.

[8] Jiahua Dong, Yang Cong, Gan Sun, Bineng Zhong, and Xiaowei
Xu, “What can be transferred: Unsupervised domain adaptation for
endoscopic lesions segmentation,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, 2020,
pp.4023–4032.

[9] Oktay O, Schlemper J, Folgoc L L, et al. Attention u-net: Learning
where to look for the pancreas[J]. arXiv preprint arXiv:1804.03999,
2018.

[10] Hu X, Yu L, Chen H, et al. AGNet: Attention-guided network for
surgical tool presence detection[M]//Deep Learning in Medical Image
Analysis and Multimodal Learning for Clinical Decision Support.
Springer, Cham, 2017: 186-194.

[11] Tsai Y H, Hung W C, Schulter S, et al. Learning to adapt structured
output space for semantic segmentation[C]//Proceedings of the IEEE
conference on computer vision and pattern recognition. 2018: 7472-
7481.

[12] Kamnitsas K , Baumgartner C , Ledig C , et al. Unsupervised
Domain Adaptation in Brain Lesion Segmentation with Adversarial
Networks[C]// International Conference on Information Processing in
Medical Imaging. Springer, Cham, 2017.

[13] Yue Zhang, Shun Miao, Tommaso Mansi, and Rui Liao, “Task driven
generative modeling for unsupervised domain adaptation: Application
to x-ray image segmentation,” in International Conference on Medi-
cal Image Computing and Computer-Assisted Intervention. Springer,
2018, pp. 599–607.

3276


