
  

  

Abstract— Automatic retinal vessel segmentation in fundus 

image can assist effective and efficient diagnosis of retina disease. 

Microstructure estimation of capillaries is a prolonged 

challenging issue. To tackle this problem, we propose attention-

aware multi-scale fusion network (AMF-Net). Our network is 

with dense convolutions to perceive microscopic capillaries. 

Additionally, multi-scale features are extracted and fused with 

adaptive weights by channel attention module to improve the 

segmentation performance. Finally, spatial attention is 

introduced by position attention modules to capture long-

distance feature dependencies. The proposed model is evaluated 

using two public datasets including DRIVE and CHASE_DB1. 

Extensive experiments demonstrate that our model outperforms 

existing methods. Ablation study valid the effectiveness of the 

proposed components. 

Index Terms— Retinal vessel segmentation, U-Net, attention 

mechanism, multi-scale fusion 

 

I. INTRODUCTION 

Retinal vessel segmentation from fundus images has been 
proved of its contribution in quantitative analysis of 
ophthalmologic diseases, such as diabetic retinopathy (DR) 
and glaucoma [1]. DR is a complication caused by diabetes, 
which will induce structural changes of retinal vasculature [2]. 
Due to the complexity of vascular morphology, it is 
challenging for accurate segmentation of retinal vessels, 
especially for capillaries. 

Traditional approaches for retinal vessel segmentation are 
based on the optimization of filtering. Various filtering 
methods have been proposed, such as Hessian matrix-based 
filters, symmetry filter, and tensor-based filter [3,4,5]. Recent 
years, deep learning (DL) has been introduced in fundus retinal 
vessel segmentation and achieved exciting results. In this way, 
Liskowski et al. proposed a retinal vessel segmentation 
method based on Convolutional Neural Network (CNN) [6]. 
Following this framework, it was further extended with 
conditional random field (CRF) was used for post-processing 
[7]. Inspired by U-Net [8], Laibacher et al. proposed M2UNet 
by adding pretrained components in the encoder part and 
contractive bottleneck blocks in the decoder part [9]. Zhuang 
et al. reported a chain of multi-path U-Nets (LadderNet), 
which has multiple pairs of encoder-decoder branches to 
extract semantic information [10]. Although existing methods 
have achieved exciting performance in vessel segmentation. 
However, it is still a challenging issue for capillary.  
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To improve the accuracy of retinal vessel segmentation, 
especially for capillary, we propose AMF-Net with multi-scale 
feature extraction and fusion. Firstly, channel attention module 
(CAM) is computed in dense block to weight the feature maps 
between channels and select useful feature map. Secondly, 
position attention module (PAM) is used to acquire long 
distance self-similarity in the feature maps for a better 
prediction. Furthermore, in order to prevent the loss of feature 
information, we design multi-scale fusion (MSF) are fused in 
the decoder part. The rest of this paper is organized as follows: 
Our retinal vessel segmentation methods and datasets are 
presented in Sect.Ⅱ. The experiment results are shown in 
Sect.Ⅲ. Finally, the conclusion is given in Sect.Ⅳ.  

II. DATA AND METHODS  

A. Data: DRIVE and CHASE_DB1 Datasets 

DRIVE is a colour fundus dataset, which is established 
from Dutch diabetic retinopathy screening project in 2004. 
There are 40 images acquired from 40 subjects age from 25 to 
90, including 7 diabetic retinopathy and 33 normal cases. 
Image size is 565 × 584 vessel regions have been manually 
segmented by two experts. In our experiments, 20 images are 
randomly selected for training, and the rest for testing. 
CHASE_DB1 dataset is collected from the left and right eyes 
of 14 school-age children. There are 28 fundus images where 
the image size is 999 × 960 vessel regions have been manually 
segmented by two experts. In our experiments, 20 images are 
randomly selected for training, and the rest for testing. 

B. Methods and Mathematical Frameworks 

The architecture of network is visualize as Figure 1. In 
order to enlarge the receptive field and extract fine detailed 
capillaries’ features. The encoder is composed of four dense 
blocks where atrous convolution layers with dilation rate of 1, 
3 and 5 are cascaded in a dense manner. Followed the dense 
encoder, CAM is applied to weight the high level features by 
global average pooling. For intermediate features, PAM is 
used to exploit spatial correlation to reconstruct micro-
structures in capillaries by a skip connection. Finally, multi-
scale feature maps are fused by MSF, which fully utilize 
features at different levels guided by channel attention and 
spatial correlations. 

For the capillaries at the ends of the retinal vessels and the 
branches, traditional convolution cannot achieve satisfied 
result due to the small receptive field in the feature maps. In 
order to solve this problem, we use atrous convolutions with  
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Fig 1. Overall architecture of the proposed network. Input image patches are fed into dense blocks and channel attention module (CAM) for channel attention 
enhanced feature (CA-Feature), position attention modules (PAM) are used to extract global information and spatial attention enhanced features (SA-Feature). 
Finally, multi-scale SA-Feature and CA-Feature are fused by multi-scale fusion (MSF) module to generate segmentation results. 

 

different dilation rates to make feature extraction for micro-
structure in fundus image through dense connections. The 
detailed architecture is shown in Figure 2(a). For each of the 
dense blocks, compared with the existing methods of 
extracting features through ordinary convolution, we use 
atrous convolutions with expansion rates of 1, 3 and 5 for 
dense feature extraction to expand the receptive field from 3 to 
17. The 1 × 1 convolution is used at the last layer in dense 
block to compress channels and reduce the amount of 
calculation. This dense atrous convolution structure can 
extract more rich local information in the feature map, and in 
the meanwhile, mitigate gradient vanishing. Batch 
normalization, ReLU activation and dropout are performed 
after each atrous convolution. We use 𝐴 𝑘,𝑑(𝑥)  to term an 

atrous convolution where 𝑘  means kernel and 𝑑  means 
dilation rate. Each dense block can be formulated as follows: 

 O = A 1,1(A3,5(Cat(A3,1(I), A3,3(A3,1(I)))))), () 

where 𝐼, 𝑂 represent the input and output of dense block, and 
𝐶𝑎𝑡(·) denotes the concatenation operation. In addition, we 
also add a CAM module to generate weight for feature maps 
in the channel direction. As shown in Figure 2(b), global 
average pooling is performed on the input feature map for 
output attention vector calculation. Two fully connected layers 
and Sigmoid activation function are applied to generate 
channel attention weight and make a element-wise product 
with the feature map. CAM is formulated as follows: 

 WCA =  σ(fC2δ(fC1(P(IC)))) () 

 

 FCAM = 𝐼C  ⊗  𝑊CA () 

where 𝛿 refers to the ReLU activation function, and 𝜎 refers to 
the Sigmoid activation function. 𝐹𝐶𝐴𝑀 , 𝐼𝐶  denote the output 
and input of CAM. The two weight matrices 𝑓𝐶1, 𝑓𝐶2 are also 
the fully connected layers in the network. 𝑃(·) represents 
global average pooling.  

 

(a) 

 

(b) 

 

(c) 

Fig 2. A architecture of (a) Dense Block, (b) Channel Attention Module 
(CAM) and (c) Position Attention Module (PAM) 

Receptive fields in conventional deep models are limited 
to a local vicinity. As a result, it is hard to model broad and 
rich contextual representations. To address this issue, PAM is 
employed to our model. As shown in Figure 2(c), 𝐹 ∈
 𝑅 𝐶 ×W ×H  denotes an input feature map to the attention 
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module, where 𝐶 , 𝑊 , 𝐻  represent the channel, width and 
height dimensions, respectively. 𝐹  is passed through three 
convolutional blocks, resulting in three feature maps 𝐹0 ∈

 𝑅 𝐶′×W ×H , 𝐹1 ∈  𝑅 𝐶
′×W ×H ,and 𝐹2 ∈  𝑅 𝐶 ×W ×H  where 

𝐶′is equal to C/16. Then, 𝐹0 is reshaped to a feature map of 
shape (𝑊 × H) ×  𝐶′  and 𝐹1  is reshaped to 𝐶′  × (𝑊 × H) . 
Both maps are multiplied, and Softmax is applied on the 
resulted matrix to generate the attention map 𝑆 ∈
 𝑅(𝑊×H)× (𝑊×H):  

 Si,j =  
exp(F0,i ·F1,j )

∑ exp(F0,i ·F1,j )W ×H 
i=1

 () 

where 𝑆𝑖,𝑗 evaluates the impact of the 𝑖𝑡ℎ position on the 𝑗𝑡ℎ 

position. Then 𝐹2 is multiplied by a permuted version of the 
attention map 𝑆, whose output is reshaped to a  𝐶 × (𝑊 × H ). 
Thus, the attention feature map corresponding to the non-local 
attention module is formulated as follows: 

 FNLM,j =  ∑ Si,jF2,j + Fj
𝑊 × H 
𝑖=1  () 

As regions of small sizes may be neglected after multi-

level feature extraction, we perform up-sampling of feature 

maps to increase the resolution by bilinear interpolation on 

four feature maps with different resolutions. Then these 

features are fused as a tensor before finally obtaining a multi-

scale feature map through convolution. The MSF is 

formulated as follows: 

 

 FMSF = Conv(Cat(B3(f1), B2(f2), B1(f3), f4)). (6) 

 

In this setting, where 𝑓1, 𝑓2, 𝑓3, 𝑓4  indicates the level in the 

architecture and 𝐶𝑎𝑡(·)  means concatenation operation. 

𝐵𝑖(𝑥) is a bilinear interpolation, where 𝑖 means scale size of 

up-sampling. 𝐶𝑜𝑛𝑣  denotes 1 × 1 convolution. Multi-scale 

feature fusion network performs feature integration of 

different levels, including shallow features and deep features. 
 

III. EXPERIMENTS AND RESULTS 

A. Evaluation Metrics and Comparisons 

Evaluation measures include accuracy (AC), sensitivity 

(SE), specificity (SP), and area under the receiver operating 

characteristics curve (AUC). We divide the pixels in the 

segmented vessel map into true positive (TP), false positive 

(FP), false negative (FN) and true negative (TN) by 

comparing them with the corresponding ground truth labels. 

The evaluation results using DRIVE and CHASE_DB1 are 

given in Table Ⅰ and Table Ⅱ. As shown, our network achieved 

the highest AC of 0.9581, and AUC of 0.9824 which is 0.0008 

and 0.0008 higher than the second-best methods Li et al. [13] 

and LadderNet [11] respectively. For CHASE_DB1 dataset, 

our network also achieved the highest SE of 0.8344, SP of 

0.9881, AC of 0.9729, and AUC of 0.9919 which is 0.0081, 

0.0058, 0.0074 and 0.0051 higher than the second-best 

methods Li et al. [13] and Xu et al. [12] respectively.  
The segmentation results of two retinal images from the 

DRIVE and CHASE_DB1 datasets by baseline U-Net and 
LadderNet, the proposed network, and GT are given in Figure 

3. The results show that our network has the ability to segment 
the shape of capillaries better than other methods and preserve 
more retinal vascular spatial structures. 

TABLE Ⅰ 

COMPARISON RESULTS WITH EXISTING METHODS ON 
DRIVE DATASET 

Method Years SE SP AC AUC 

Fu et al. [7] 2016 0.7603 - 0.9523 - 

M2UNet [9] 2018 0.7863 0.9755 0.9511 0.9544 

LadderNet [10] 2018 0.8081 0.9770 0.9553 0.9767 

Bo et al. [13] 2019 0.9740 0.9816 0.9567 0.9772 

Xu et al. [11] 2020 0.9751 0.9812 - 0.9805 

Li et al. [12] 2020 0.7735 0.9838 0.9573 0.9816 

Ours 2021 0.8139 0.9826 0.9581 0.9824 

 

TABLE Ⅱ 

COMPARISON RESULTS WITH EXISTING METHODS ON 
CHASE_DB1 DATASET 

Method Years SE SP AC AUC 

M2UNet [9] 2018 0.7056 0.9873 0.9581 0.9754 

LadderNet [10] 2018 0.7856 0.9799 0.9620 0.9772 

Bo et al. [13] 2019 0.8074 0.9821 0.9661 0.9812 

Xu et al. [11] 2020 0.8263 0.9775 - 0.9868 

Li et al. [12] 2020 0.7970 0.9823 0.9655 0.9815 

Ours 2021 0.8344 0.9881 0.9729 0.9919 

 

B. Ablation Study 

We further perform ablation studies using both databases 

to demonstrate the contributions of each of the new 

components. In our network, the experimental results of 

baseline U-Net, U-Net with dense convolution (U-Net + DB), 

U-Net using dense convolution and attention block (U-Net + 

DB + CAB), our network w/o PAM (U-Net + DB + CAM + 

MSF) and our network are given in Table 3. Using densely 

convolution resulted in an improved AUC of 0.43% and 1.39% 

over DRIVE and CHASE_DB1. Dense convolution and 

attention block contributed to improved AUC of 0.11% on 

DRIVE dataset respectively. Our network w/o PAM block 

achieved a further improved AUC gain of 0.03% on both 

datasets. Finally, our network achieved a further improved 

AUC gain of 0.16% and 0.12%. 
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Input                Ground truth                U-Net [8]            LadderNet [11]               Ours 

 

Fig. 3. Segmentation results by U-Net, LadderNet and ours network on DRIVE (first row) and CHASE_DB1 (second row) datasets. The red rectangle 

highlight improves fine detailed segmentation results. 

TABLE Ⅲ 

ABLATION STUDIES USING THE SAME EXPERIMENT SETTINGS ON BOTH DATASETS 

 

Method 

DRIVE CHASE_DB1 

SE SP AC AUC SE SP AC AUC 

U-Net [8] 0.7598 0.9803 0.9499 0.9744 0.8288 0.9701 0.9578 0.9772 

U-Net + DB 0.7855 0.9807 0.9558 0.9778 0.8331 0.9884 0.9713 0.9911 

U-Net + DB + CAM 0.8246 0.9747 0.9556 0.9798 0.8527 0.9845 0.9710 0.9907 

U-Net + DB + CAM + MSF 0.7904 0.9811 0.9565 0.9801 0.8352 0.9873 0.9714 0.9910 

U-Net + DB + CAM + MSF + PAM (Ours) 0.8139 0.9826 0.9581 0.9824 0.8344 0.9881 0.9729 0.9919 

 

IV. CONCLUSION 

We proposed AMF-Net for retinal vessel segmentation 

especially for fine-detailed structures. The newly designed 

dense blocks and MSF demonstrated effectiveness in 

capturing rich multi-scale information. The channel attention 

module added attentional weights for details to the feature 

map. The PAM further improved the performance of capillary 

segmentation Evaluation results on two public datasets 

suggest the improved performance over state-of-the-art 

methods. 
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