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Abstract— Brain-Computer Interfaces (BCIs) that decode a
patient’s movement intention to control a prosthetic device
could restore some independence to paralyzed patients. An
important step on the road towards naturalistic prosthetic
control is to decode movement continuously with low-latency.
BCIs based on intracortical micro-arrays provide continuous
control of robotic arms, but require a minor craniotomy. Sur-
face recordings of neural activity using EEG have made great
advances over the last years, but suffer from high noise levels
and large intra-session variance. Here, we investigate the use of
minimally invasive recordings using stereotactically implanted
EEG (sEEG). These electrodes provide a sparse sampling across
many brain regions. So far, promising decoding results have
been presented using data measured from the subthalamic
nucleus or trial-to-trial based methods using depth electrodes.
In this work, we demonstrate that grasping movements can
continuously be decoded using sEEG electrodes, as well. Beta
and high-gamma activity was extracted from eight participants
performing a grasping task. We demonstrate above chance
level decoding of movement vs rest and left vs right, from
both frequency bands with accuracies up to 0.94 AUC. The
vastly different electrode locations between participants lead to
large variability. In the future, we hope that sEEG recordings
will provide additional information for the decoding process in
neuroprostheses.

I. INTRODUCTION

Continuously decoding movement from neural signals is
an important step towards naturalistic prosthetic control.
Promising advances have been made using non-invasive
electro-encephalographic (EEG) [1] or invasive cortical
methods, e.g. microelectrode arrays [2]. However, brain-
computer interfaces (BCIs) using stereotactic or sEEG elec-
trodes, capturing neural activity from subcortical structures,
are relatively unexplored, while holding potential to con-
tribute to higher performing decoding algorithms [3]. These
electrodes cover a wide variety of areas across the brain
and provide access to harder to reach structures, such as
the basal ganglia, insula or hippocampus. Additionally, the
electrodes provide simultaneous access to local high fre-
quency oscillations in multiple areas, which could be used
as control signal for BCIs. Exploiting these high frequency
signals can decrease the decoder’s response latency to the
users’ intended action, contributing to naturalistic prosthetic
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control. Additionally, activity from subcortical structures
might uncover additional control signals for adaptive deep
brain stimulation [4].

II. BACKGROUND — RELATED WORK

So far, several studies have presented decoding results
using local field potentials (LFPs) measured with depth elec-
trodes. All depth electrode implantations are based solely on
clinical needs, which results in two main patient populations:
Parkinson’s disease (PD) patients with deep brain stimu-
lation electrodes and medication-resistant epilepsy patients
implanted for presurgical focus localization. The electrodes
in PD patients cover the globus pallidus interna (GPi) and
the subthalamic nucleus (STN), and thus decoding efforts
utilize activity from these areas. Loukas and Brown [5] were
able to predict the onset of voluntary hand movement with
95% sensitivity and 77% specificity on a trial-to-trial basis.
Mamun et al. [6] improved on these results by showing
91.5±2.3% accuracy on movement detection and 74.0±6.4%
accuracy on laterality detection, also on trial-to-trial basis and
averaged over patients with STN and GPi electrodes. Further
efforts on decoding movements using DBS electrodes aimed
to decode gripping force from the STN [7], [8]. Recently,
Shah et al. [9] decoded gripping force with a correlation up
to 0.76 between decoded and actual gripping force, and were
able to do so continuously.

Opposed to the specific and consistently targeted regions
in PD patients, areas covered in epilepsy patients are spread
throughout the brain, which makes comparisons between
patients and studies significantly more complicated. Above
chance gesture decoding has been demonstrated in several
studies [10], [11]. Breault et al. [12] decoded movement
speed with a correlation of 0.38±0.03, and 70%±3% when
decoding three speed levels.

The studies discussed so far mostly utilize the beta fre-
quency band (12-30 Hz) and (high-)gamma band (30-55 and
55-90 Hz). Beta activity, especially in the STN, but also
(sensori-)motor cortex, is decreased during movement. An
increase in beta power is consequently associated with the in-
hibition of (imagined) movement [13][14]. Gamma or high-
gamma activity is considered to hold localized information of
movement [15] and is known to increase during movement.
Khawaldeh et al. [14] showed that high-gamma activity
was predictive of intended contralateral and ipsilateral limb
movements, supported by a decoding performance of 0.79 to
0.80 area under the receiver operator curve (AUC).
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Up to now, most movement decoding efforts are targeting
a trial-to-trial prediction. However, an important step towards
naturally controlled closed-loop BCIs is to decode intention
continuously. The work by Shah et al. [9] already showed
promising results on continuous force decoding using STN
activity, but it has not yet been demonstrated in other brain
areas using depth electrodes. In this work, we demonstrate
that it is possible to decode grasping movements continu-
ously and detect laterality using sEEG electrodes. Due to the
large variability in covered cortical and white matter regions
in each patient, results varied drastically and highlight the
importance of target selection.

III. METHODS

A. Participants

Eight patients (mean age 39.5 ± 15.8, 4 male, 4 female)
with medication-resistant epilepsy participated in our study,
while being under presurgical assessment to identify epilep-
togenic zones. Written informed consent was provided by all
participants, and all agreed to participate voluntarily during
the monitoring period. The experiments were conducted
under the supervision of experienced healthcare staff in a
clinical environment, and were approved by the IRB of
Maastricht University and Epilepsy Center Kempenhaeghe
(METC 2018-0451).

B. Experimental paradigm

Participants were asked to execute opening and closing
their left or right hand continuously when a 3-second in-
struction was shown on a screen. There was a 3-second rest
period in between trials. The task was repeated 30 times per
hand in random order, resulting in a total of 60 trials.

C. Electrode Locations

Electrode locations were solely based on clinical needs.
Co-registration of a pre-operative T1-weighted MRI and a
post-operative CT scan were used to determine the electrode
locations. FREESURFER [16] and img pipe [17] were
used for both co-registration and anatomical labeling of the
electrodes. A 3D view of the electrode placement of two
of the participants is shown in Figure 1a and 1b. The sparse
coverage of many different brain regions, including temporal
gyri, frontal gyri, hippocampus and amygdala (figure 1a),
provides a variety of cortical and white matter signals.

D. Data Acquisition

The implanted sEEG-electrodes (Microdeep intracerebral
electrodes; Dixi Medical, Beçanson, France) had a diameter
of 0.8mm and contained 5 to 18 contacts. Electrode contacts
were 2mm long and the inter-contact distance was 1.5mm.
The recordings were common ground referenced. Neural data
were acquired at 1024 Hz using a 128-channel Micromed SD
LTM amplifier (Micromed S.p.A, Treviso, Italy). Incoming
data were synchronized to the experimental timings using
LabStreamingLayer [18].

(a) P2 (b) P5

Fig. 1: Electrode placements of two participants. Electrodes
cover a wide variety of (sub-)cortical areas across both
hemispheres.

E. Signal Processing

Data were first detrended and high-pass filtered using a
finite impulse response filter with a cutoff frequency of 0.5
Hz. Then, beta or high-gamma activity were extracted by
applying two band pass infinite impulse response filters (12
- 30 Hz for beta and 55 - 90 Hz for high-gamma) and a notch
filter of 48 - 52 Hz to attenuate line noise of 50 Hz. Next, the
envelop of the frequency bands was calculated by applying a
Hilbert transform. The resulting signal was windowed using
1s windows with 100ms frame shift and the average was
calculated for each window. These windowing settings were
considered to include enough data to capture the neural dy-
namics reliably, while also facilitating a low-latency predic-
tion. The same windowing algorithm was applied to the trial
labels, but the mode was used as aggregation method. The
resulting matrix was of form [NWindows × Nchannels].
All analyses are implemented using Python 3.7.5, filters were
applied using the MNE package (v0.21.0) [19]. The learning
algorithms described in the next section were implemented
using Sci-kit learn (v0.22) [20]. Source code is available at
[github.com/mottenhoff/continuous-grasp-decoding].

F. Model Development & Validation

A linear discriminant analysis (LDA) classifier using
singular value decomposition as solver was trained and
validated on either beta or high-gamma band activity from
all channels. The LDA was fitted on a 3-class problem (rest,
left hand movement and right hand movement) using 10-fold
non-shuffled cross-validation. Performance was evaluated by
calculating the average area under the receiver operator curve
(AUC) over all folds. The label distribution in the data was
900 left hand, 900 right hand and 1800 rest labels.

IV. RESULTS

Both beta and high-gamma-based models performed well
above chance in most participants. Figure 2 shows the results
per participant and frequency band. Chance level is 0.5. In
move vs rest predictions, the trained models reached a per-
formance of up to 0.80 AUC (0.77 to 0.83; 95% confidence
interval) when trained on beta activity and 0.81 (0.79 to
0.84) using high-gamma activity. When considering laterality
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Fig. 2: Overall results of LDA models trained on beta and high-gamma. High performance is seen in both models, notably
in laterality detection using high-gamma activity. However, there is large variability between and within participants. ROC
AUC: Area under the receiver operator curve

detection, the maximum performance was comparable to
grasping movement detection with an AUC of 0.82 (0.75 to
0.88) using beta activity. The maximum performance of the
high-gamma models predicting laterality was excellent with
0.94 (0.91 to 0.96) AUC. However, the results show high
variation in performance between and within participants.
For example, models trained on P2gamma, P4beta and P6
only reached an AUC at chance level or slightly above for
all comparisons, whereas P5gamma shows excellent perfor-
mance on laterality discrimination (0.93, 0.90 to 0.96) but
performance just above chance level on detecting movement
vs rest (0.66, 0.62 to 0.70).

V. DISCUSSION

We showed that LFP measured with sEEG electrodes
contain enough information to accurately decode grasping
movements and movement laterality in a continuous way.
We improved on previous work that decoded on a trial-to-
trial basis using sEEG electrodes [10], [11], and put a step
forward towards closed-loop movement decoding systems
from depth electrodes. Additionally, we expand on the results
of Shah et al. [9], by showing that accurate movement
predictions can also be made from a sparse brain-wide
coverage of the brain using depth electrodes.

However, our results show high variability in performance
within and between participants, which we attribute to the
wide variety of covered brain areas. It is plausible that the
low performing models simply did not have access to the
areas encoding movement related activity. Moreover, if one
only considers the high performing models, it remains chal-
lenging to identify informative areas. Based on fMRI studies
in (non-)human primates and humans, reach and grasp re-
lated neural activity is seen in dorso-medial and dorso-lateral
pathways between the parietal cortex and fronto-medial areas
[21]. However, within the many covered areas, only few
overlap and there is too few data to identify systematically

involved areas; electrodes of the eight included participants
cover > 50 areas with > 600 contacts. Note that bilateral
locations are aggregated as single unique area and that the
labels are based on the definitions by the FREESURFER
software. Additionally, a significant proportion of these con-
tacts are located in white matter (n = 270) or unknown areas
(n = 69). Unknown areas were labeled as such because they
could not be defined during anatomical labeling. Both white
matter and unknown areas are included in the models, as they
could hold important information. However, interpretation of
white matter signals is an unsolved challenge and requires
an in-depth multi-site analysis[22]. Initial investigations into
the identification of important areas showed highly variable
results and indicated that a more in-depth analysis was
required, which was outside the scope of this work.

Both the beta and high-gamma envelopes were extracted,
as both frequencies are identified to modulate movement
[13], [15] and successfully implemented in decoding models
[9]. Our results strengthen these findings as both the beta
and high-gamma model perform well above chance, where
the highest performance was seen using high-gamma activity.
However, the high-gamma models also show larger variabil-
ity in performance, which might be caused by the higher
spatial localization of high-gamma. High-gamma spreads less
far in a volume than the lower beta frequency, thus making
it less likely that the relevant signal is captured from a
specific area. Despite this, our results indicate that in the
current implementation, the high-gamma local field potential
holds enough information to achieve excellent performance.
Many other frequencies, such as alpha or theta, might also
be important, especially in areas within the broad coverage
of sEEG electrodes. We did not include more frequency
bands, as it would increase the complexity of the models
and potentially decrease the reliability of the models. Even
within the included frequency bands, the information that the
oscillation encodes may differ per area. One example is that
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beta activity in STN is suggested to suppress the basal gan-
glia to encode relevant information of intended actions [14],
while beta activity in the sensorimotor cortex is associated
with movement planning and response errors [23]. In this
work, we chose the same frequencies as used in Shah et al.
[9] to increase comparability. With carefully implemented
machine learning approaches to avoid overfitting, it is not
necessarily required to know what information the signal
encodes. However, to improve BCI reliability, especially in
the varying coverage of sEEG electrodes, it is important to be
able to identify which specific areas are used in the decoding
models. In short-term, this can guide experimental paradigms
based on the implanted locations, and in the long-term, it can
increase performance and reliability between participants and
experiments.

VI. LIMITATIONS

Participants suffering from epilepsy performed the exper-
iments. It is unknown if and how the signal is modulated by
epilepsy. Furthermore, the used experimental design did not
allow for investigation of additional promising factors such
as speed.

VII. CONCLUSION

In conclusion, we show that movement related activity can
be decoded continuously using sEEG electrodes in various
brain areas with excellent performance in some participants.
However, the sparse covering of the brain also results in large
variability in performance within and between participants.
The current work is a next step towards naturally controlled
BCIs, but future research should focus on identification of
important areas covered by sEEG electrodes.
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