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Abstract — Machine learning and artificial intelligence have 

shown remarkable performance in accelerated magnetic 

resonance imaging (MRI). Cloud computing technologies have 

great advantages in building an easily accessible platform to 

deploy advanced algorithms. In this work, we develop an open-

access, easy-to-use and high-performance medical intelligence 

cloud computing platform (XCloud-pFISTA) to reconstruct 

MRI images from undersampled k-space data. Two state-of-the-

art approaches of the Projected Fast Iterative Soft-Thresholding 

Algorithm (pFISTA) family have been successfully implemented 

on the cloud. This work can be considered as a good example of 

cloud-based medical image reconstruction and may benefit the 

future development of integrated reconstruction and online 

diagnosis system. 

I. INTRODUCTION 

AGNETIC resonance imaging (MRI) is a significant 
clinical diagnosis tool but suffers from relatively long 
data acquisition time. To achieve fast imaging, sparse 

sampling and parallel imaging are hot topics for decades [1-7]. 
Optimization methods and deep learning have raised great 
concerns for accelerating imaging speed and improving image 
quality. The former usually takes the model reconstruction as 
an inverse problem, which is solved through continuous 
iteration until convergence [8-11]. The latter trains deep neural 
network with a big database to reconstruct images [12-14]. 
Although both of them have excellent performance, the 
environment configuration is complex and cumbersome. To 
the best of our knowledge, there are few integrated and easy-
to-use platforms for MRI researchers to easily and effectively 
do the medical image processing and analysis. 

Cloud computing is a data-centered distributed computing 
mode. It is accessible, high-integrated, safe and has virtualized 
hardware [15, 16]. Compared with traditional computing mode, 
it has superior technologies in data storage and computing 
power. Also, users could conveniently utilize the resource on 

 
 

the cloud once login the platform. Moreover, the cloud 
computing platform provides a unified environment for 
various methods, which frees users from complex and tedious 
environment configuration. We are committed to developing 
the intelligent cloud computing platform for MR signal 
processing and analysis. In our previous work, several 
advanced approaches for accelerated Nuclear Magnetic 
Resonance (NMR) spectroscopy have been deployed on the 
open access cloud platform successfully [17, 18]. We believed 
that, it could be  helpful for medical imaging to deploy various 
state-of-the-art MRI reconstruction approaches on the cloud. 

In this work, we developed the XCloud-pFISTA, an easy-
to-use, high-performance, and open access medical intelligent 
cloud for accelerated MRI. So far, two representative MRI 
reconstruction approaches have been implemented on the 
cloud: 1) Projected fast iterative soft-thresholding (pFISTA) 
[19], a model-based optimization method for single-coil MRI 
reconstruction; 2) pFISTA-Net [20], a model-driven deep 
learning for parallel MRI reconstruction. Users can enjoy these 
advanced approaches to conveniently and efficiently recover 
high-quality images from partial sampled k-space. 

II. METHODS 

A. MRI Reconstruction Approaches 

MRI reconstruction from undersampled data by exploiting 

sparsity of MRI images and low-rankness of k-space raises 

great concerns [3, 8]. Qu et al. proposed pFISTA, an iterative 

approach for single-coil MRI reconstruction, which employs 

sparsity of images under the redundant representation of tight 

frame [19]. The guaranteed convergence analysis of the 

parallel imaging version was given in the subsequent work 

[10]. Compared with other state-of-the-art approaches, 

pFISTA has the advantages of faster convergence speed, 

insensitivity to step size, and only needs to set one parameter. 

Recently, convolutional neural network (CNN) has shown 

great potential in many fields [21-25]. However, the lack of 

understandable architecture hinders its medical application 

[26, 27]. Unrolling optimization methods into deep neural 

networks is a novel way to utilize the information of numerous 

databases and enhance network interpretability [12-14]. 

pFISTA-Net is an unrolled deep neural network for parallel 

MRI reconstruction [20]. In pFISTA-Net, manual-craft 

sparsity transform is replaced by learnable convolutional 

filters, making it more robust for reconstructing images in 

different scenarios. The residual structure is employed to 

improve the learning capabilities of the network. 

Experimental results show that pFISTA-Net has low 

reconstruction error, and is robust to different sampling 

patterns. 
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Currently, pFISTA and pFISTA-Net have been cited and 

compared by many works [10, 14, 28-30]. As shown in Figure 

1, XCloud-pFISTA that integrates above-mentioned two 

approaches will make them easier for MRI researchers to use, 

and perform further medical image analysis. 
 

 

Figure 1. The schematic of XCloud-pFISTA. 

B. Cloud Computing Platform 

Cloud computing is a kind of distributed computing, which 

is accessible, high-integrated, safe, and has virtualized 

hardware [31]: 

1) Cloud computing platform is accessible to users at all 

levels. Users can employ resource on the cloud through a user-

friendly interface without coding. 

2) Many MRI reconstruction approaches are developed in 

different software environment. Cloud computing platform 

provides a unified virtual environment for them. 

3) As to the platform security, we are developing a set of 

security mechanisms, including data encryption with Secure 

Sockets Layer (SSL) certificates and strict access policies. The 

platform is easy to be legally visited and could prevent data 

leakage effectively. 

4) Thanks to hardware virtualization, the cloud platform is 

not limited by the number of computer kernels and data storage 

memory, making it possible to deploy many neural network 

models and big databases. 

C. System Architecture 

Figure 2 shows the entire system architecture of XCloud-

pFISTA. It adopts the browser/service (B/S) architecture, 

mainly consists of three parts: browser, service, and data 

access layer (DAL). 

Browser: Users visit the website of XCloud-pFISTA 

through a browser without downloading or installing any 

software. The website has a user-friendly interface with some 

functional buttons on it. Each button is the visualization of a 

certain application programming interface (API), i.e., the call 

interface of service in the next part. Users can activate a 

certain API by pushing the corresponding button rather than 

coding, thus sending a service request to the next part. 

Service: Requests will be transmitted by Nginx gateway 

following a complex and effective strategy. Here, pFISTA 

and pFISTA-Net are deployed on different web servers as 

core services. Web servers employ Google remote procedure 

call (gRPC) to communicate and network file system (NFS) 

to share data. These technologies ensure the high-effective 

and stability of the service part. 

 

DAL: All data are stored on the DAL by an effective data 

storage strategy. MySQL is employed to store structural data, 

such as the user’s name and password. And Redis is used to 

store frequently used data. Demo data and reconstruction data 

are stored in MongoDB, which is suitable for storing non-

relational and large-size data. 

 

Figure 2. The system architecture of XCloud-pFISTA. 

III. RESULTS 

A. XCloud-pFISTA Workflow 

Up to now, XCloud-pFISTA supports single-coil and 

multi-coil MRI reconstruction, and is open access at 

http://36.134.50.123:2345 (Test account: EMBC, Password: 

EMBC2021). Notably, we decide not to open up the 

registration in the peer review. The user manual and demo 

data are provided on the cloud for the quick try. Besides, you 

can also upload your own data and process them easily and 

quickly. Figure 3 shows the whole workflow of the usage of 

XCloud-pFISTA. It mainly includes five steps: 

1) Pre-process k-space data into a required format before 

uploading them to the cloud platform. 

2) Login XCloud-pFISTA through the test account and 

password. 

3) Select pFISTA or pFISTA-Net for image reconstruction, 

according to the undersampled data (single-coil or multi-coil 

data).  

4) After uploading all required files, click the submit button. 

Then users can download the reconstruction results with a 

short wait. 

5) (Optional) Delete uploaded data and reconstruction 

results permanently. XCloud-pFISTA never save any data 

without the consent of the users. 

Figure 4 shows the user interface of XCloud-pFISTA. The 

menu is very clear, including homepage, pFISTA, pFISTA-

Net, and demo data (Figure 4(a)). The crucial interfaces of 
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pFISTA and pFISTA-Net are shown in Figure 4(b) and Figure 

4(c), respectively. 

 
 

Figure 3. The workflow of XCloud-pFISTA for MRI reconstruction. 

 

Figure 4. The user interface of XCloud-pFISTA. (a) Account information and 

menu. (b) pFISTA for single-coil data reconstruction. (c) pFISTA-Net for 

multi-coil data reconstruction. 

B. Reconstruction Results and Comparison 

In order to verify the consistency of the reconstruction 

results and the performance of the cloud platform, we 

compare the cloud and local results. Both of pFISTA and 

pFISTA-Net are written in Python. The parameters used in 

pFISTA and pFISTA-Net are all consistent with original 

papers [19, 20]. Here, Local reconstruction is conducted on a 

Windows PC with 2 cores CPU, 8 GB RAM, and one 

NVIDIA GTX 850M. For reconstruction on cloud, we use the 

China Mobile e-cloud host with 16 cores CPU, 128 GB RAM, 

two NVIDIA T4 GPUs and 1TB SSD. Under 10 MB/s upload 

bandwidth, it takes 0.43 seconds to upload 987 KB single-coil 

raw data and 19.23 seconds to upload 55.7 MB parallel raw 

data.  

For quantitative comparison, we adopt the relative 2l  norm 

error (RLNE) defined as 

2 2
ˆRLNE : || - || || || x x x ,                    (1) 

where x  is the ground truth and x̂  is the reconstructed image. 

For single-coil data, pFISTA is used to reconstruct the T2-

weighted brain dataset, which is acquired from a healthy 

volunteer at a 3T Siemens Trio Tim MRI scanner with 32-

coils using a T2-weighted turbo spin echo sequence (TR/TE 

= 6100/99 ms, FOV = 220×220 mm2, slice thickness = 3mm). 

Results of pFISTA on local and cloud are shown in Figure 5.  
 

 

Figure 5. Reconstruction results of pFISTA on local and cloud. (a) is the 
ground truth. (b-c) are the reconstructed images of pFISTA on local and cloud, 

respectively. (d) is a 2D pseudo-radial mask (30%). (e-f) are error 

distributions corresponding to the above methods. The RLNEs of (b-c) are 
0.102 and 0.102, respectively. The reconstruction time of (b-c) are 67.08 s 

and 31.99 s, respectively. Note: No parallel computing is used in 

reconstruction. 

For multi-coil data, pFISTA-Net is used to reconstruct the 

knee dataset from a public knee dataset [32]: coronal proton-

density (15 knee coils, TR/TE = 2750/27 ms, FOV = 320×320 

mm2, In-plane resolution = 0.49×0.44 mm2). Results of 

pFISTA-Net on local and cloud are shown in Figure 6. 
 

 

 
 

Figure 6. Reconstruction results of pFISTA-Net on local and cloud. (a) is the 
ground truth. (b-c) are the reconstructed images of pFISTA-Net on local and 

cloud, respectively. (d) is a Cartesian mask (25%). (e-f) are error distributions 

corresponding to the above methods. The RLNEs of (b-c) are 0.167 and 0.167, 
respectively. The reconstruction time of (b-c) are 10.33s and 2.59 s, 

respectively.  

Figure 5 and Figure 6 show that XCloud-pFISTA obtains 

the same high-quality results as on local, while the 

reconstruction time is reduced remarkably. Thus, the results 

suggest that, XCloud-pFISTA is a reliable and high-

performance cloud computing platform for accelerated MRI.  
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IV. CONCLUSION AND OUTLOOK 

In summary, we developed XCloud-pFISTA, a reliable, 

high-performance, and open access medical intelligence 

cloud for accelerated MRI. Two representative approaches, 

pFISTA and pFISTA-Net, have been implemented on cloud 

for single-coil and multi-coil image reconstruction. We are 

constantly improving the XCloud-pFISTA in terms of data 

security, user privacy, reconstruction flexibility, and hope to 

provide an advanced cloud computing platform, which 

integrates numerous state-of-the-art approaches for MRI 

processing and analysis. Furthermore, we also plan to 

integrate artificial intelligence diagnostics on XCloud-

pFISTA in the future. 
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