
  

  

Abstract— Management of respiratory conditions relies on 
timely diagnosis and institution of appropriate management. 
Computerized analysis and classification of breath sounds has a 
potential to enhance reliability and accuracy of diagnostic 
modality while making it suitable for remote monitoring, 
personalized uses, and self-management uses. In this paper, we 
describe and compare sound recognition models aimed at 
automatic diagnostic differentiation of healthy persons vs 
patients with COPD vs patients with pneumonia using deep 
learning approaches such as Multi-layer Perceptron Classifier 
(MLPClassifier) and Convolutional Neural Networks (CNN).  
 

Clinical Relevance— Healthcare providers and researchers 
interested in the field of medical sound analysis, specifically 
automatic detection/classification of auscultation sound and 
early diagnosis of respiratory conditions may benefit from this 
paper. 

I. INTRODUCTION 

Respiratory conditions such as Chronic Obstructive 
Pulmonary Disease (COPD) and pneumonia are among the 
leading causes of hospitalizations [1] and the most common 
causes of morbidity and mortality in the world [2,3].  
Management of respiratory conditions relies on timely 
diagnosis and institution of appropriate management. 
Furthermore, COPD, asthma, pulmonary hypertension, and 
occupation lung diseases are among the most common 
respiratory conditions treated in ambulatory and hospital 
settings. Diagnostic evaluation ranges from bedside or clinical 
assessment involving history and physical exam to non-
invasive radiographic and invasive testing. Despite years of 
research and characterization of lung pathology, many 
respiratory illnesses are diagnosed late and may no longer be 
responsive to therapy [4].  

Thoracic auscultation remains the cornerstone of 
cardiopulmonary physical examination. This inexpensive, 
readily available, and noninvasive evaluation can pick up 
adventitious breath sounds, suggest abnormalities, and give 
clues to underlying conditions. The ability to rapidly note 
changes in breath sounds has been utilized in respiratory 
monitoring in a variety of ambulatory, acute care, and 
perioperative settings. However, the availability and simplicity 
of auscultation is associated with several potential drawbacks. 
First, the appreciation of breath sounds is operator-dependent 
with variable agreement. Second, qualitative assessment 
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implies inherent subjectivity. Inconsistencies can arise from a 
multitude of patient and device-related factors. Third, 
respiratory sound evaluation relies on bedside examination 
and may be compromised in the settings of remote monitoring, 
self-management, and telemedicine. For these reasons, the 
standardization in assessment and digital analysis of breath 
sounds has a potential to enhance reliability and accuracy of 
this diagnostic modality while making it suitable for remote 
monitoring, personalized uses, and self-management uses.  

Wheezing and crackles have been the focus of breath 
sound analysis. Wheezing refers to the sound created by the 
oscillation of opposing walls of the narrowed airways [5]. It 
has commonly been attributed to a wide frequency range 
(100Hz – 2Khz) and associated with obstructive airway 
diseases such as asthma or COPD [6]. Crackles, on the other 
hand, are typically a late inspiratory finding attributed to the 
re-expansion of collapsed alveolar spaces. Distinguishing 
between fine and coarse crackles can be accomplished by 
appreciating their respective frequencies of 650Hz and 350Hz 
and may help in diagnostic evaluation [7]. Over the years 
investigative efforts have concentrated on ways to automate 
the recognition of wheezing and crackles from breath sound 
recordings and use them as surrogates for the identification of 
cardiorespiratory pathologies.  

It is of utmost importance to note that finding wheezing or 
crackles is nonspecific and could be attributed to a multitude 
of conditions. While wheezing has generally been attributed to 
airway disorders, it has also been described in the context of 
airspace diseases such as pneumonia and congestive heart 
failure [8]. The designation of airway disorders itself refers to 
a large spectrum of pathologically and clinically distinct 
conditions from upper airway obstruction to small airway 
inflammation. Similarly, crackles could represent chronic 
irreversible disorders such as interstitial fibrosis or more acute 
treatable conditions such as lower respiratory infection. 
Therefore, narrowing the classification to specific diagnoses 
rather than more sensitive auscultatory findings may augment 
the diagnostic yield of sound recognition models. 

In this paper, we describe and compare breath sound 
recognition models aimed at automatic diagnostic 
differentiation of healthy persons vs patients with COPD vs 
patients with pneumonia using novel deep learning approaches 
such as MLPClassifier and CNN.  
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II. RELATED WORK 

 Sound is traveling vibration, where a wave moves through 
air. Basically, a wave has two main properties: amplitude 
(loudness) and frequency (the number of a wave’s vibrations 
or samples over a time period).   

  In order to recognize patterns, a machine learning (ML) 
algorithm first must obtain/extract an informative set of 
features (strong predictors) regarding the desired properties of 
the raw data before feeding these features into a ML model 
for training. For audio feature extraction, the audio signal is 
split into short-term windows (frames) with a set of short-term 
audio features for each windowed frame. The common 
extracted features are Mel Frequency Cepstral Coefficients 
(MFCCs) which signify the short-term power spectrum of a 
frame, Wavelet (waveform of limited duration), and a Short-
Time Fourier Transform (STFT) which is a sequence of 
Fourier transforms of a frame. Recent efforts on computerized 
breath sound recognition used features such as MFCCs [9, 10, 
11], wavelets [12, 13], and STFT [12, 13, 14], and optimized 
S-transform [7]. The MFCC process includes STFT together 
with a Mel-frequency scaled filter bank and a Discrete Cosine 
Transform [15]. MFCC has been acknowledged as the most 
popular audio feature extraction method [15]. The extracted 
features are then fed into a traditional ML model (HMM, 
GMM, BDT, SVM) or a deep learning model such as MLP, 
CNN, Recurrent Neural Networks (RNN) and Residual 
Neural Networks (ResNet) to train a sound recognition model. 

 For this study, we obtained the publicly available 
Respiratory Sound database [17] that was provided for the 
scientific challenge organized at Int. Conf. on Biomedical 
Health Informatics (ICBHI’17) to train models for respiratory 
conditions classification. The summary of previous work on 
sound recognition using this dataset is described below: 

TABLE I.  SUMMARY PERFORMANCE OF PREVIOUS WORK 

Author Classification Feature Mode Sen 
% 

Spe 
% 

Acc
% 

Jakovljevic[16] Anomaly-
driven1 MFCC HMM,G

MM N/A N/A 39.6 

Chen [7] Anomaly-
driven1 (3) OST ResNet N/A N/A 98.8 

Chambers  [9] Anomaly-
driven1 (4) MFCC BDT 22 78 49.6 

Serbes [12] Anomaly-
driven1 (4) 

STFT+
wavelet SVM 55 83 57.9 

Perna [11] Pathology-
driven2 MFCC CNN N/A N/A 82.0 

Ma [13] Anomaly-
driven1 (4) 

STFT+
wavelet 

Bi-
ResNet 31 69 52.8 

Kochetov [10] Anomaly-
driven1 (3) MFCC NMRNN 58 73 65.7 

Demir [14] Anomaly-
driven1 (4) STFT CNN N/A N/A 65.5 

Acharya [6] Anomaly-
driven1 (4) MFCC CNN-

RNN 49 84 66.3 

HMM - Hidden Markov models; OST - Optimized S-transform; BDT - Boosted decision tree; 
GMM - Gaussian mixture model; NMRNN - noisemaking RNN; MFCC+ - MFCC and low-
level features; STFT - short-time Fourier transform. 
1-Anomaly-driven classification of breath sounds differentiates between wheezes, crackles, 
and the combination of or absence of adventitious sounds, with the number in parenthesis 
representing the number of classifiers used. 
2-Pathology-driven classification refers to the identification of healthy vs unhealthy individuals 
based on breath sounds and may further include subclassification of chronic vs acute findings.   

Prior work on sound classification using the ICBHI 
database revolved around the detection and differentiation of 
adventitious lung sounds. Data was classified into wheezes, 

crackles, and the combination or absence of both anomalies in 
most studies (Table 1). MFCC or STFT features (alone or in 
combination with wavelets) were employed in all but one 
study. A wide variety of deep learning and traditional ML 
models have been created for sound recognition. Several 
subsequent studies employed CNN models resulting in 
accuracy ranging from 65.5% to 82% [14, 11]. Notably, one of 
the author’s later works using RNN achieved even better 
performance with accuracy over 90% [18]. A different variant 
of RNN that included both noise and respiratory classifiers 
was successfully developed in an anomaly-driven model 
reaching accuracy of 66% [10]. Finally, a hybrid CNN-RNN 
model has been invented to tackle the temporal and frequency 
variance commonly seen in adventitious lung sounds [8]. In 
this design CNN obtained abstract features while temporal 
relationships were established by the Long Short-Term 
Memory (LTSM) layer. In addition, softmax classifier was 
implemented to output results. The hybrid model achieved 
66.3% accuracy. Besides, ResNet models have also been 
successfully developed to differentiate spectrogram data of 
respiratory anomalies [7, 13]. One study used STFT and the 
wavelet feature in combination with two ResNet blocks to 
recognize adventitious sounds from ICBHI database with the 
accuracy of 50.16% [13].  In a different study an impressive 
98.8% accuracy was accomplished when optimized S-
transform feature was classified with ResNet [7].  

Pathology-driven work focused on distinguishing healthy 
vs unhealthy respiratory sounds. For this binary classification, 
a CNN model together with MFCC feature reached 83% 
accuracy [11]. A categorical classification was also proposed 
distinguishing from chronic vs acute respiratory pathologies, 
resulting in similar performance. Further work of these authors 
incorporating RNN led to superior results [18]. While acuity 
of pathologic findings has clinical implications, diagnostic 
classification of respiratory sounds could further clinical 
usefulness and dramatically change management. No prior 
study to our knowledge evaluated diagnostic performance of 
sound classification. 

III. METHOD 

The ICBHI’17 Respiratory Sound Database [17] contains 
audio samples of recordings obtained independently by the 
researchers at the University of Aveiro, the Aristotle 
University of Thessaloniki, and the University of Coimbra. 
The samples were recorded at  Hospital Infante D. Pedro 
(Aveiro, Portugal), the Papanikolaou General Hospital, 
(Thessaloniki, Greece) and the General Hospital of Imathia 
(Naousa, Greece) in real life conditions with high noise levels. 
The cycles were confirmed by respiratory experts as 
“including crackles, wheezes, a combination of them, or no 
adventitious respiratory sounds” [17]. A total of 920 annotated 
audio samples from 126 patients were recorded through 5.5 
hours to obtain 6898 cycles with duration range from 10s to 
90s. Among these cycles,  1864 contain crackles, 886 contain 
wheezes, and 506 contain both crackles and wheezes. The 
diagnosis/illness of the subjects are also provided in a text file 
with 2 columns: PatientNumber and his/her respiratory 
condition. None of the subjects had comorbidity conditions. 
The recorded audio files were named by the combination of 5 
elements, separated with underscores. These elements were 
PatientNumber, RecordingIndex, ChestLocation, 
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AcquisitionMode, and EquipmentType. When checking each 
filename for the PatientNumber and matching it with the 
diagnosis file, we can know the respiratory condition of  the 
recorded subject. Among 126 subjects, there are 8 respiratory 
conditions: 1 asthma sample, 16 Bronchiectasis samples, 13 
Bronchiolitis samples, 793 COPD samples, 35 Healthy 
samples, 2 LRTI samples, 37 Pneumonia samples, and 23 
URTI samples.  

A.  Data Preprocessing 
a. Data Selection 
In this paper, we report only the results of the classification 

of Healthy-COPD-Pneumonia conditions using breath sound. 
The data included 793 COPD samples, 35 Healthy samples, 
and 37 Pneumonia samples. 

b. Data Exploratory and Data Engineering 
The main properties of the audio files were accessed to 

ensure property consistency of data (data exploratory). These 
attributes included sample rate, number of audio channels, and 
bit-depth. The “sampling rate” reflects how frequent it will 
take samples. All files have the sampling rate of 44.1khz, 
which indicates the samples are taken 44,100 times per second.  
Bit depth describes how detailed it will take samples. A 16-bit 
depth indicates that any sample can take a value from range 
65,536 values corresponding to its amplitude. Samples taken 
with 8 bit will be 256 times less detailed than that of 16 bit. All 
the audio files are monophonic (single audio channel). Since 
the bit-depth was not consistent, all files were converted (data 
engineering) to 16 bit audio. 

 c. Data Visualization 
The visualization of waveform and spectrogram of  

selected samples were conducted. Below are the samples of 
the 3 groups. X-axis represents time (distance) and Y-axis 
represents amplitute of the sound: 

Figure 1.  Waveform visualization of COPD Sample 

 
Figure 2.  Waveform visualization of Pneumonia Sample 

 
Figure 3.  Waveform visualization of Healthy Sample 

 
c. Data Splitting 
For all the classification models that are reported in this 

paper, 80% of the audio samples of each diagnosis were 

selected randomly for training models, and 20% of the audio 
samples of each type were used for testing. 

B.  Features Extraction  
There are 4 features that are extracted from the breath 

sound samples. These features include (1) MFCC short-term 
power spectrum, (2) mel-scaled spectrogram frequency, (3) 
chromagram (the 12 different pitch classes), and (4) tonnetz 
(computed tonal centroid features). A total of 166 attributes 
were obtained as a result of feature extraction.  

C.  Multi-layer Perceptron Classifier (MLPClassifier)  
 The initial classification model was developed with 
MLPClassifier. MLP is a feedforward Artificial Neural 
Networks model with at least one input layer, one hidden 
layer, and one output layer. MLP adopts a backpropagation 
algorithm to calculate a gradient of the error function with 
respect to the weights by comparing the desired output with 
the expected output then adjusting the weight in order to 
minimize the difference between the actual output and the 
oncoming output. Each node in the hidden and output layers 
uses a nonlinear activation function to solve nonlinear pattern 
classification problems. MLP works best with data that is not 
linearly separable, therefore, it has been employed for 
biological analysis, image and speech recognition. In order to 
classify Healthy-COPD-Pneumonia breath sound, we trained 
a MLPClassifier model with the activation function = ’relu’ 
by default, the batch_size (the size of minibatches for 
stochastic optimizers) of 250, the hidden_layer_size (the 
number of neutrons in a hidden layer) of 300, the maximum 
number of iterations of 500, and a constant initial learning rate 
as long as the learning loss (error) keeps on reducing 
(learning_rate=‘adaptive’). Variables obtained by the above 
feature extraction step were used to train the model. 
D. Convolution Neural Network (CNN) Model 

As MLPClassifier has both strengths and limitations, 
another CNN model was trained to classify Healthy-COPD-
Pneumonia breath sound. The CNN model includes two main 
components which are the feature extractors and a classifier. 
Each layer in the feature extractor receives its immediately 
preceding layer's output as input, then its output is transferred 
as an input to the succeeding layers. For the classifier (also 
called the dense layer), the output of the feature extractor is 
transformed into a 1D feature vector. Since we had conducted 
the features extraction manually by extracting MFCCs, mel, 
chroma, and tonnetz of the audio files, we could use them to 
feed directly into the Dense layer.  This way also made sure 
that the data that was used to train the MLP and CNN models 
were the same. Finally, we used the Softmax activation 
function for outputting the results. With Softmax as an 
activation function, the output would be the prediction 
probability of each class so the sum of all Softmax units would 
be 1 in the case of categorical classification model. The 
architecture of the CNN included 4 Dense layers. The first 3 
Dense layers had 166, 256, and 128 units respectively with 
‘relu’ activation function. The output Dense layer had the 
output of 3 units since we had 3 classes to classify. Two 
Dropout layers were added to the model to reduce overfitting 
and, therefore, increase generalizability.  
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IV. RESULT 

The accuracy rate of MLP model was 94.12% while the 
accuracy rate for the CNN model was 99.02% for classifying 
Healthy-COPD-Pneumonia diseases. For the MLP model, the 
sensitivities for COPD, Healthy, and Pneumonia were 96.7%, 
96.7%, 80% respectively while the specificities were 90.3%, 
96.8%, 100% respectively. For the CNN model, there were 
only 2 Pneumonia samples misclassified as COPD. As 
MLPClassifier is computationally costly when the number of 
weights is high, it becomes inefficient due to the reduced 
generalization ability when dealing with data that has a spatial 
or temporal relationship. Although the strength of MLP is 
being able to learn non-linear data, the flexibility of MLP also 
indicates that MLP has high potential of fitting to noise and 
systemic variation in the data. CNN has been known for 
eliminating this problem.  

TABLE II.  PERFORMANCE COMPARISION OF MODELS 

Classifier Sensitivity 
(%) 

Specificity 
(%) 

Accuracy 
(%) 

MLP 91.1 95.7 94.1 
CNN 99.3 100 99.2 

 

V. DISCUSSION 
Prior attempts at sound classification targeted 

identification and differentiation of wheezing and crackles. 
While this information is clinically useful, these findings are 
nonspecific and definitive diagnostic conclusions can rarely be 
drawn from them in isolation. Furthermore, narrowing the 
spectral waveform analysis of breath sounds to only patterns 
appreciable by the human ear can greatly limit predictive 
potential. Relieving the expectations of identifying only 
wheezing and crackles could uncover previously unknown 
feature associations and help create generalizable prediction of 
respiratory pathologies [19]. Repeatedly new highly predictive 
associations have been discovered in addition to and 
sometimes contradicting the human perception-derived 
features previously thought to carry unequivocal predictive 
potential [20]. 

We are working to apply developed recognition models on 
the database of auscultation sounds from patients at Mayo 
Clinic. The collected recordings will be used to further 
investigate the model performance in classification of multiple 
respiratory diseases in real-time. We are also open to explore 
more possibilities to improve the classification accuracy rate 
by adding the LSTM classifier into  the CNN model.  

VI. CONCLUSION 
This paper reported methods to classify Healthy-COPD-

Pneumonia conditions from auscultation sound using 
MLPClassifier and CNN methods. The CNN model’s 
prediction results were 99% accurate. Our paper is among the 
first papers reporting the diagnostic performance of breath 
sound classification, which confirmed the possibility of using 
deep learning to recognize respiratory diseases by 
auscultation sound.  
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